08.01.2021

Дыхательная функция плаценты. Трофическая функция плаценты. Трофическая функция нейрона Трофическая нервная система


Изучение трофических отношений между автономной нервной системой и иннервируемой ею тканью является одним из наиболее сложных вопросов. Из имеющихся сейчас доказательств трофической функции большинство является сугубо косвенными.

До сих пор не ясно, все ли нейроны автономной нервной системы обладают трофической функцией, или это прерогатива только симпатической части, и ответственны ли за них исключительно механизмы, относящиеся к пусковой активности, т. е. различные медиаторы, или другие, неизвестные пока биологически активные вещества?

Хорошо известно, что в процессе длительной работы мышца утомляется, вследствие чего ее работа уменьшается и может, наконец, совершенно прекратиться.

Известно также, что после большего или меньшего отдыха работоспособность утомленных мышц восстанавливается. Что же «снимает» утомление мышцы, и не имеет ли к этому отношения симпатическая нервная система?

Л. А. Орбели (1927) было установлено, что если раздражать двигательные нервы и этим доводить мышцы конечности лягушки до значительного утомления, то оно быстро исчезает и конечность вновь приобретает способность работать сравнительно долгое время, если к раздражению двигательного нерва присоединить стимуляцию симпатического ствола этой же конечности.

Таким образом, включение в работу симпатического нерва, изменяющего функциональное состояние утомленной мышцы, устраняет возникшую усталость и делает мышцу снова работоспособной. В адаптационно-трофическом действии симпатической нервной системы Л. А. Орбели выделял две взаимосвязанные стороны. Первая - адаптационная. Она определяет функциональные параметры рабочего органа. Вторая обеспечивает поддержание этих параметров посредством физико-химических изменений уровня метаболизма тканей.

Состояние симпатической иннервации оказывает значительное влияние на содержание в мышце ряда химических веществ, играющих важную роль в ее деятельности: молочной, кислот, гликогена, креатинина.

Симпатическое волокно оказывает также влияние на способность мышечной ткани проводить электричество, существенно влияет на возбудимость двигательного нерва и т. д.

На основании всех этих данных было сделано заключение, что симпатическая нервная система, не вызывая в мышце никаких структурных изменений, вместе с тем приспосабливает мышцу, изменяя ее физические и химические свойства, и делает ее более или менее чувствительной к тем импульсам, которые приходят к ней по двигательным волокнам. Благодаря этому ее работа становится более приспособленной для потребностей данного момента.

Высказывалось предположение о том, что усиление работы утомленной скелетной мышцы под влиянием раздражения подходящего к ней симпатического нерва происходит за счет сокращений кровеносных сосудов и соответственно поступления в капилляры новых порций крови, однако при последующем изучении это предположение не подтвердилось.

Оказалось, что феномен этот можно воспроизвести не только на обескровленной, но и на мышце, сосуды которой заполнены вазелиновым маслом.

«Физиология вегетативной нервной системы»,
А.Д. Ноздрачев

Экспериментально было показано, что работоспособность утомленной скелетной мышцы повышается, если одновременно раздражается ее симпатический нерв. Сама по себе стимуляция симпатических волокон не вызывает сокращения мышцы, но изменяет состояние мышечной ткани - повышает ее восприимчивость к соматическим нервным импульсам. Такое повышение работоспособности мышцы является результатом увеличения обменных процессов под влиянием симпатических возбуждений: растет потребление кислорода, увеличивается содержание АТФ, креатинфосфата, гликогена. Полагают, что одной из зон приложения этого влияния является нервно-мышечный синапс.

Наряду с этим, было также обнаружение, что стимуляция симпатических волокон может значительно изменить возбудимость рецепторов, функциональные свойства ЦНС. На основании этих и многих других фактов Л.А.Орбели создал теорию адаптационно-трофической функции симпатической нервной системы. Согласно этой теории симпатические влияния не сопровождаются непосредственно видимым действием, но значительно повышают адаптивные возможности эффектора.

Так, симпатическая нервная система активирует деятельность нервной системы в целом, активирует защитные силы организма (иммунные процессы, барьерные механизмы, свертывание крови), процессы терморегуляции. Ее возбуждение происходит при любых стрессовых состояниях и служит первым звеном запуска сложной цепи гормональных реакций.

Особенно ярко участие симпатической нервной системы обнаруживается в формировании эмоциональных реакций человека, независимо от причин, их вызывающих. Так, например, радость сопровождается тахикардией, расширением сосудов кожи, а страх - замедлением сердечного ритма, сужением кожных сосудов, потоотделением, измением перистальтики кишечника. Гнев вызывает расширение зрачков.

Следовательно, в процессе эволюционного развития симпатическая нервная система превратилась в инструмент мобилизации всех ресурсов организма как целого (интелектуальных, энергетических и др.) в тех случаях, когда возникает угроза самому существованию организма.

Мобилизирующая роль симпатической нервной системы опирается на обширную систему ее связей, позволяющую посредством мультипликации импульсов в

многочисленных пре- и паравертебральных ганглиях мгоновенно вызывать генерализованные реакции практически всех органов и систем организма. Существенным дополнением к ним является и выброс в кровь из надпочечников адреналина, который вместе с ней образует симпато-адреналиновую систему.

Возбуждение симпатической нервной системы приводит к изменению гомеостатических констант организма, что выражается в повышении кровяного давления, выходе крови из депо, поступлении в кровь ферментов, глюкозы, повышении метаболизма тканей, снижении мочеобразования, угнетении функции пищеварительного тракта и т. д. Поддержание постоянства этих показателей целиком ложится на парасимпатический и метасимпатический отделы.

Таким образом, в сфере управления симпатической нервной системы находятся в основном процессы, связанные с расходом энергии в организме, а парасимпатический и метасимпатический - с ее кумуляцией.

Трофика нейрона. Внутри нейрона находится желеобразное вещество - нейроплазма. Тела нервных клеток выполняют трофическую функцию по отношению к отросткам, т. е. регулируют их обмен веществ. Трофическое влияние на эффекторные клетки организма с помощью химических веществ самих нервных клеток. Питательная функция глии была предположена Гольджи, исходя из структурных соотношений нервных и глиальных клеток и соотношения последних с капиллярами мозга. Отростки протоплазматических астроцитов (сосудистые ножки) тесно контактируют с базальной мембраной капилляров, покрывая до 80% их поверхности. Трофическая функция глиальных клеток осуществляется либо одним астроцитом (сосудистая ножка ножка на капилляре а другие отростки – на нейроне), либо через систему астроцит – олигодендроцит – нейрон. Показано также что глиальные клетки принимают участие в образовании гемато-энцефалического барьера, обеспечивающего, как известно, селективный перенос веществ из крови в нервную ткань. Однако, следует отметить, что существенная роль глиальных клеток в функционировании гемато-энцефалического барьера признается не всеми исследователями 27. Концепции реактивности и активности в рассмотрении функционирования нейрона.

Парадигма реактивности: нейрон, как и индивид, отвечает на стимул. С позиций традиционной парадигмы реактивности поведение индивида представляет собой реакцию на стимул. В основе реакции лежит проведение возбуждения по рефлекторной дуге: от рецепторов через центральные структуры к исполнительным органам. Нейрон при этом оказывается элементом, входящим в рефлекторную дугу, а его функция - обеспечением проведения возбуждения. Тогда совершенно логично рассмотреть детерминацию активности этого элемента следующим образом: ответ на стимул, подействовавший на некоторую часть поверхности нервной клетки, может распространяться дальше по клетке и действовать как стимул на другие нервные клетки. В рамках парадигмы реактивности рассмотрение нейрона вполне методологически последовательно: нейрон, как и организм, реагирует на стимулы. В качестве стимула выступает импульсация, которую нейрон получает от других клеток, в качестве реакции - следующая за синаптическим притоком импульсация данного нейрона. Парадигма активности: нейрон, как и индивид, достигает «результат», получая необходимые метаболиты из своей микросреды.

28. Стандартные диапазоны фоновой электроэнцефалограммы.

ЭЭГ - метод регистрации электрической активности (биопотенциалов) головного мозга через неповрежденные покровы головы (интактный метод), позволяющий судить о его физиологической зрелости, функциональном состоянии, наличии очаговых поражений, общемозговых расстройствах и их характере.

(Регистрация биопотенциалов непосредственно с обнаженного мозга называется электрокортикографией, ЭКоГ, и обычно проводится во время нейрохирургических операций).

Первым ученым, продемонстрировавшим возможность такой регистрации электрической активности головного мозга человека был Ганс Бергер (работы 1929-1938 гг).

Основными понятиями, на которые опирается характеристика ЭЭГ, являются:

Средняя частота колебаний

Максимальная амплитуда

Суммарная фоновая ЭЭГ коры и подкорковых образований мозга животных, варьируя в зависимости от уровня филогенетического развития и отражая цитоархитектонические и функциональные особенности структур мозга, также состоит из различных по частоте медленных колебаний.

Одной из основных характеристик ЭЭГ является частота. Однако из-за ограниченных перцепторных возможностей человека при визуальном анализе ЭЭГ, применяемом в клинической электроэнцефалографии, целый ряд частот не может быть достаточно точно охарактеризован оператором, так как глаз человека выделяет только некоторые основные частотные полосы, явно присутствующие в ЭЭГ. В соответствии с возможностями ручного анализа была введена классификация частот ЭЭГ по некоторым основным диапазонам, которым присвоены названия букв греческого алфавита:

альфа - 8-13 Гц,

бета - 14-40 Гц,

тета - 4-6 Гц,

дельта - 0,5-3 Гц,

гамма - выше 40 Гц и др.).

У здорового взрослого человека при закрытых глазах регистрируется основной альфа-ритм. Это так называемая синхронизированная ЭЭГ.

При открытых глазах или при поступлении сигналов от других органов чувств происходит блокада альфа-ритма и появляются бета-волны . Это называется десинхронизацией ЭЭГ.

Тета-волны и дельта-волны в норме у бодрствующих взрослых не выявляются, они появляются только во время сна.

Для ЭЭГ подростков и детей напротив характерны более медленные и нерегулярные дельта-волны даже в бодрствующем состоянии.

В зависимости от частотного диапазона, но также и от амплитуды, формы волны, топографии и типа реакции различают ритмы ЭЭГ, которые также обозначают греческими буквами. Например, альфа-ритм , бета-ритм , гамма-ритм , дельта-ритм , тета-ритм , каппа-ритм , мю-ритм , сигма-ритм и др. Считается, что каждый такой «ритм» соответствует некоторому определённому состоянию мозга и связан с определёнными церебральными механизмами.

Трофическая функция (греч. trophe - питание) проявляется в регулирующем влиянии на метаболизм и питание клетки (нервной или эффекторных). Учение о трофической функции нервной системы было развито И. П. Павловым (1920) и другими учеными.
Основные данные о наличии этой функции получены в опытах с денервацией нервных или эффекторных клеток, т.е. перерезания тех нервных волокон, синапсы которых заканчиваются на исследуемой клетке. Оказалось, что клетки, лишенные значительной части синапсов, их укрывают, становятся гораздо более чувствительными к химическим факторам (например, к воздействию медиаторов). При этом существенно изменяются физико-химические свойства мембраны (сопротивление, ионная проводимость и др.), биохимические процессы в цитоплазме , возникают структурные изменения (хроматолиз), растет количество хеморецепторов мембран.
В чем же причина этих изменений? Значительным фактором является постоянное поступление (в том числе и спонтанное) медиатора в клетки, регулирует мембранные процессы в постсинаптической структуре, повышает чувствительность рецепторов к химическим раздражителям. Причиной изменений может быть выделение из синаптических окончаний веществ («трофических» факторов), которые проникают в постсинаптическую структуру и влияют на нее.
Есть данные о перемещении некоторых веществ аксоном (аксонного транспорт). Белки, которые синтезируются в теле клетки, продукты метаболизма нуклеиновых кислот, нейромедиаторы, нейросекрет и другие вещества перемещаются аксоном до нервного окончания вместе с клеточными органеллами, в частности митохондриями, которые несут, очевидно, полный набор энзимов. Экспериментально доказано, что быстрый аксонного транспорт (410 мм за 1 сутки) и медленный (175-230 мм за 1 сутки) являются активными процессами, которые требуют затраты энергии метаболизма. Допускают, что транспортный механизм осуществляется с помощью микротру бочек и нейрофилов а ментов аксона, которым происходит скольжение актиновых транспортных нитей. При этом розчеплюеться АТФ, чем обеспечивается энергия для тракспорту.
Выявлено также ретроградный аксонного транспорт (от периферии к телу клетки). Вирусы и бактериальные токсины могут проникать в аксон на периферии и перемещаться по нему к телу клетки. Например, столбнячный токсин, который производят бактерии, попавшие в рану на коже, попадают в организм путем ретроградного транспорта аксоном в ЦНС и становится причиной мышечных судорог, которые могут вызвать смерть. Введение в область перерезанных аксонов некоторых веществ (например, фермента лероксидазы) сопровождается поступлением их в аксон и распространением до сомы нейрона.
Решение проблемы трофического влияния нервной системы очень важно для понимания механизма тех трофических расстройств (трофические язвы, выпадение волос, ломкость ногтей и т.д.), которые нередко наблюдаются в клинической практике.


В биологии длительное время господствовало убеждение, что нервная регуляция деятельности скелетных мышц обеспечивается исключительно соматической нервной системой. Такое представление, прочно утвердившееся в умах исследователей, было поколеблено только в первой трети 20-го столетия.

Хорошо известно, что при длительной работе мышца утомляется: её сокращения постепенно ослабевают и могут наконец полностью прекратиться. Затем после некоторого отдыха работоспособность мышцы восстанавливается. Причины и материальная основа этого явления оставались неизвестными.

В 1927 г. Л.А. Обрели установил, что если длительным раздражением двигательного нерва доводить лапку лягушки до утомления (прекращения движений), а затем, продолжая двигательную стимуляцию, одновременно раздражать и симпатический нерв, то конечность быстро возобновляет свою работу. Следовательно, подключение симпатического влияния изменяло функциональное состояние утомленной мышцы, устраняла усталость и восстанавливала её работоспособность.

Было установлено, что симпатические нервы оказывают влияние на способность мышечных волокон проводить электрический ток, на возбудимость двигательного нерва. Под действием симпатической иннервации изменяется содержание в мышце ряда химических соединений, играющих важную роль в её деятельности: молочной кислоты, гликогена, креатина, фосфатов. На основании этих данных было сделано заключение, что симпатическая нервная система вызывает определенные физико-химические изменения в скелетной мышечной ткани, регулирует её чувствительность к двигательным импульсам, приходящим по соматическим волокнам, приспосабливает (адаптирует) её к выполнению нагрузок, возникающих в каждой конкретной обстановке. Высказывалось предположение, что усиление работы утомленной мышцы под влиянием вступающего в неё симпатического нервного волокна происходит за счет увеличения кровотока. Однако при экспериментальной проверке это мнение не подтвердилось.

Специальными исследованиями установлено, что у всех позвоночных прямая симпатическая иннервация скелетной мышечной ткани отсутствует. Следовательно, симпатические влияния на скелетные мышцы могут осуществляться только путем диффузии медиатора и, видимо, других веществ, выделяемых сосудодвигательными симпатическими терминалями. Справедливость такого вывода подтверждается простым экспериментом. Если во время стимуляции симпатического нерва мышцу поместить в раствор или перфузировать её сосуды, то в омывающем растворе и перфузате появляются вещества (неустановленной природы), которые при введении в другие мышцы вызывают эффект симпатического раздражения.

В пользу указанного механизма симпатического влияния говорят также большой латентный период до проявления эффекта, его значительная продолжительность и сохранение максимума после прекращения симпатической стимуляции. Естественно, что в органах, наделенных прямой симпатической иннервацией, таких как сердце, сосуды, внутренние органы и др., для проявления трофического влияния не требуется такого длительного латентного времени.

Основные доказательства механизмов, опосредующих нейротрофическую регуляцию со стороны симпатической нервной системы, получены на скелетной мышечной ткани при изучении функциональных перегрузок, денервации, регенерации, перекрестного соединения нервов, подходящих к различным типам мышечных волокон. По результатам исследований сделан вывод, что трофическое влияние обусловлено комплексом метаболических процессов, поддерживающих нормальную структуру мышц, обеспечивающих её потребности при выполнении специфических нагрузок и восстановление необходимых ресурсов после прекращения работы. В этих процессах участвует ряд биологически активных (регуляторных) веществ. Доказано, что для проявления трофического действия необходим транспорт веществ из тела нервной клетки к исполнительному органу. Об этом свидетельствуют в частности данные, полученные в опытах денервации мышц. Известно, что деренвация мышцы приводит к её атрофии (нейрогенная атрофия). Исходя из этого, в свое время был сделан вывод, что нервная система влияет на метаболизм мышц посредством передачи двигательных импульсов (отсюда термин «атрофия от бездействия»). Однако оказалось, что возобновление сокращений денервированной мышцы электрической стимуляцией не может остановить процесс атрофии. Следовательно, нормальную трофику мышц нельзя связывать только с двигательной активностью. В этих работах весьма интересны наблюдения, касающиеся значения аксоплазмы. Оказалось, что чем длиннее периферический конец перерезанного нерва, тем позже развиваются дегенеративные изменения в денервированной мышце. Повидимому, в этом случае решающее значение имело количество оставшейся в контакте с мышцей аксоплазмы, содержащей субстраты трофического действия, переносимые из тела нейрона.

Можно считать общепризнанным, что роль нейромедиаторов не ограничевается только участием в передаче нервного импульса; они оказывают влияние и на процессы жизнедеятельности иннервируемых органов, включаясь в механизмы энергообеспечения тканей и в процессы пластического возмещения структурных затрат (элементов мембран, ферментов и др.).

Так, катехоламины непосредственно участвуют в осуществлении адаптационно-трофической функции симпатической нервной системы благодаря своей способности быстро и интенсивно влиять на метаболические процессы путем повышения уровня энергетических субстратов в крови, и усиления секреции гормонов, они вызывают также перераспределение крови, возбуждение нервной системы.

Имеются данные, свидетельствующие об участии ацетилхолина в изменении углеводного, белкового, водного, электролитного обмена иннервируемых тканей, а также наблюдения о положительном эффекте инъекций ацетилхолина при некоторых заболеваниях кожи, сосудов, нервной системы.

Известно, что адаптационно-трофическое действие проявляют и чувствительные нервные волокна. В последнее время установлено, что окончания чувствительных волокон содержат различные нейроактивные вещества, в том числе нейропептиды. Наиболее часто обнаруживаются нейропептиды Р и пептид, связанный с кальцитониновым геном. Предполагается, что эти пептиды, выделяясь из нервных окончаний, могут оказывать трофическое влияние на окружающие ткани.

Кроме того, в ряде исследований последних лет показано, что в культуре клеток и в организме экспериментальных животных дендриты нервных клеток постоянно претерпевают изменения. Они активно укорачиваются (ретракция отростка) и вследствие этого происходит отрыв их терминальных частей (ампутация терминалей). В последующем вместо утраченных отрастают новые окончания, а ампутированные терминали разрушаются. При этом выделяются различные биологически активные соединения, в том числе упомянутые выше пептиды. предполагается, что эти вещества могут проявлять нейротрофическое действие.

ВОПРОСЫ И ЗАДАЧИ ДЛЯ САМОКОНТРОЛЯ

1. Какие центры ствола мозга участвуют в регулировании висцеральных функций автономной нервной системы?

2. В регулировании каких функций появляется роль гипоталамуса?

3. От каких интерорецепторов поступают сигналы в гипоталамус? На изменение каких параметров внутренней среды реагируют нейроны-рецепторы медиального гипоталамуса?

4. Назовите сегментарные центры симпатической нервной системы.

5. Из каких образований состоит периферическая часть симпатической нервной системы?

6. Аксоны каких нервов образуют белые и серые соединительные ветви?

7. Укажите места переключения белых соединительных ветвей.

8. Что представляют собой пре – и постганглионарные волокна? Как располагаются постганглионарные волокна, выходящие из узлов симпатического ствола?

9. В составе каких нервных проводников идут к своим мишеням серые соединительные ветви и что конкретно они иннервируют?

10. Назовите основные органы, иннервируемые постганглионарными волокнами шейных узлов симпатического ствола. Какие узлы симпатического ствола участвуют в иннервации сердца?

11. Назовите предпозвоночные нервные сплетения и укажите из каких образований они состоят.

12. Назовите структурные и функциональные признаки, отличающие парасимпатическую нервную систему от симпатической.

13. Из каких ядер головного и спинного мозга выходят преганглионарные парасимпатические волокна?

14. Откуда получают преганглионарные волокна ресничный узел, и что иннервируют его эфферентные нейроны?

15. Из какого ядра выходят преганглионарные волокна крыловидного узла; укажите какие образования иннервируются нейронами этого узла?

16. Назовите источники иннервации околоушных, подчелюстной и подъязычной слюнных желез

17. Охарактеризуйте тазовое нервное сплетение. Чем оно образованно и что иннервирует?

18. Перечислите главные структурно – функциональные особенности метасимпатической нервной системы.

19. Опишите строение симпатического нервного узла.

20. Перечислите характерные особенности строения интрамуральных нервных узлов.

21. Охарактеризуйте особенности строения блуждающего нерва, отличающие его от других нервных стволов.

22. У ребенка диагностирована болезнь Гиршпрунга. Объясните ее причины. Чем она проявляется?

23. У экспериментального животного перерезан передний корешок спинного мозга. Отразится ли это на строении эффекторных волокон сосматической и автономной нервной системы?

24. Больной жалуется на сильную потливость кистей рук и подмышек. Какова вероятная причина этого недуга?

25. Назовите структурно-функциональные особенности вегетативных нервов.

26. Из каких афферентных нейронов состоит чувствительное звено рефлекторной дуги АНС.

27. Чем отличается эфферентное звено рефлекторных дуг соматической и автономной нервной системы?

28. В гипоталамусе имеются особые нейроны-рецепторы, чутко реагирующие на изменение констант крови. Объясните, какие особенности кровеносной системы гипоталамуса способствуют проявлению этой способности указанных нейронов.

29. Чем отличается холинэргическая передача импульса с преганглионарного и постганглионорного волокон парасимпатической системы (Н и М рецепторами).

30. Какие нервные ветви образуют постганглионарные волокна, выходящие из узлов симпатического ствола?

31. Какие особенности характерны для строения ядер и нейронов ретикулярной формации ствола мозга?


© 2024
polyester.ru - Журнал для девушек и женщин