14.09.2024

Школа пуркинье. Строение клетки человека Сведения о клетке


Все живые существа и организмы на состоят из клеток: растения, грибы, бактерии, животные, люди. Несмотря на минимальный размер, все функции целого организма выполняет клетка. Внутри нее протекают сложные процессы, от которых зависит жизнеспособность тела и работа его органов.

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани — кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом , бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток . В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал — регулирование процесса обмена веществ, использование собственного генетического материала (наличие и РНК ), получение и расход энергии.

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана — клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать и оксид углерода;
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии, генетический материал, представленный в виде молекул ДНК, входящих в состав ;
  • цитоплазма — это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома — важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы .
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Ядро

Поскольку — клеточный центр, поэтому следует уделить его строению и функциям особое внимание. Данный компонент является важнейшим элементом для всех клеток: содержит наследственные признаки. Без ядра стали бы невозможными процессы размножения и передачи генетической информации . Посмотрите на рисунок, изображающий строение ядра.

  • Ядерная оболочка, которая выделена сиреневым цветом, пропускает внутрь нужные веществам и выпускает обратно через поры — маленькие отверстия.
  • Плазма представляет собой вязкую субстанцию, в ней находятся все остальные ядерные компоненты.
  • ядро размещается в самом центре, имеет форму сферы. Его главная функция – образование новых рибосом.
  • Если рассмотреть центральную часть клетки в разрезе, то можно увидеть малозаметные синие переплетения — хроматин, главное вещество, который состоит из комплекса белков и длинных нитей ДНК, несущих в себе необходимую информацию.

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное. Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты — хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл. С его участием энергия света преобразуется в энергию химических связей органических веществ.

Интересно! Хлоропласты в большом объеме сосредоточены главным образом в надземной части растений — зелёных плодах и листьях.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом;
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины;
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений;
  • разрушаются при нагревании и взаимодействии с кислородом;
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго — по нескольку часов и даже дней.

Строение хлоропласт

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы;
  • мышечная — мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани;
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль;
  • нервная — образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза . Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы . Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.
  5. Вывод

    Вы узнали каково строение клетки — самой важной составляющей организма. Миллиарды клеток составляют удивительно мудро организованную систему, которая обеспечивает работоспособность и жизнедеятельность всех представителей животного и растительного мира.

Наука, изучающая строение и функции клеток, называется цитология .

Клетка - элементарная структурная и функциональная единица живого.

Клетки, несмотря на свои малые размеры, устроены очень сложно. Внутреннее полужидкое содержимое клетки получило название цитоплазмы .

Цитоплазма является внутренней средой клетки, где проходят различные процессы и расположены компоненты клетки - органеллы (органоиды).

Клеточное ядро

Клеточное ядро - это важнейшая часть клетки.
От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. В оболочке ядра имеются многочисленные поры для того, чтобы различные вещества могли попадать из цитоплазмы в ядро, и наоборот.
Внутреннее содержимое ядра получило название кариоплазмы или ядерного сока . В ядерном соке расположены хроматин и ядрышко .
Хроматин представляет собой нити ДНК. Если клетка начинает делиться, то нити хроматина плотно накручиваются спиралью на особые белки, как нитки на катушку. Такие плотные образования хорошо видны в микроскоп и называются хромосомами .

Ядро содержит генетическую информацию и управляет жизнедеятельностью клетки.

Ядрышко представляет собой плотное округлое тело внутри ядра. Обычно в ядре клетки бывает от одного до семи ядрышек. Они хорошо видны между делениями клетки, а во время деления - разрушаются.

Функция ядрышек - синтез РНК и белков, из которых формируются особые органоиды - рибосомы .
Рибосомы участвуют в биосинтезе белка. В цитоплазме рибосомы чаще всего расположены на шероховатой эндоплазматической сети . Реже они свободно взвешены в цитоплазме клетки.

Эндоплазматическая сеть (ЭПС) участвует в синтезе белков клетки и транспортировке веществ внутри клетки.

Значительная часть синтезируемых клеткой веществ (белков, жиров, углеводов) не расходуется сразу, а по каналам ЭПС поступает для хранения в особые полости, уложенные своеобразными стопками, “цистернами”, и отграниченные от цитоплазмы мембраной. Эти полости получили название аппарат (комплекс) Гольджи . Чаще всего цистерны аппарата Гольджи расположены вблизи от ядра клетки.
Аппарат Гольджи принимает участие в преобразовании белков клетки и синтезирует лизосомы - пищеварительные органеллы клетки.
Лизосомы представляют собой пищеварительные ферменты, “упаковываются” в мембранные пузырьки, отпочковываются и разносятся по цитоплазме.
В комплексе Гольджи также накапливаются вещества, которые клетка синтезирует для нужд всего организма и которые выводятся из клетки наружу.

Митохондрии - энергетические органоиды клеток. Они преобразуют питательные вещества в энергию (АТФ), участвуют в дыхании клетки.

Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы - кристы.

Плазматическая мембрана

Чтобы клетка представляла собой единую систему, необходимо, чтобы все ее части (цитоплазма, ядро, органоиды) удерживались вместе. Для этого в процессе эволюции развилась плазматическая мембрана , которая, окружая каждую клетку, отделяет ее от внешней среды. Наружная мембрана защищает внутреннее содержимое клетки - цитоплазму и ядро - от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.

Строение мембраны одинаково у всех клеток. Основу мембраны составляет двойной слой молекул липидов, в котором расположены многочисленные молекулы белков. Некоторые белки находятся на поверхности липидного слоя, другие - пронизывают оба слоя липидов насквозь.

Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из нее могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы (молекулы пищевых веществ - белки, углеводы, липиды) через мембранные каналы пройти не могут и попадают в клетку при помощи фагоцитоза или пиноцитоза:

  • В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. Этот процесс называется фагоцитозом (клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки (клеточной оболочкой) и не могут захватывать вещества при помощи фагоцитоза).
  • Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твердые частицы, а капельки жидкости с растворенными в ней веществами. Это один из основных механизмов проникновения веществ в клетку.

Все живые существа состоят из клеток - маленьких, окруженных мембраной полостей, заполненных концентрированным водным раствором химических веществ. Клетка - элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Считается, что все организмы и все составляющие их клетки произошли эволюционным путем от общей преДНКовой клетки.

Примерная история клетки

Вначале под действием различных природных факторов (тепло, ультрафиолетовое излучение, электрические разряды) появились первые органические соединения, которые послужили материалом для построения живых клеток.

Ключевым моментом в истории развития жизни видимо стало появление первых молекул-репликаторов. Репликатор – это своеобразная молекула, которая является катализатором для синтеза своих собственных копий или матриц, что является примитивным аналогом размножения в животном мире. Из наиболее распространённых в настоящее время молекул, репликаторами являются ДНК и РНК. Например, молекула ДНК, помещённая в стакан с необходимыми компонентами, самопроизвольно начинает создавать свои собственные копии (хотя и значительно медленнее, чем в клетке под действием специальных ферментов).

Появление молекул-репликаторов запустило механизм химической (добиологической) эволюции. Первым субъектом эволюции были скорее всего примитивные, состоящие всего из нескольких нуклеотидов, молекулы РНК. Для этой стадии характерны (хотя и в очень примитивизированном виде) все основные черты биологической эволюции: размножение, мутации, смерть, борьба за выживание и естественный отбор.

Химической эволюции способствовал тот факт, что РНК является универсальной молекулой. Кроме того, что она является репликатором (т.е. носителем наследственной информации), она может выполнять функции ферментов (например, ферментов, ускоряющих репликацию, или ферментов, разлагающих конкурирующие молекулы).

В какой-то момент эволюции возникли РНК-ферменты, катализирующие синтез молекул липидов (т.е. жиров). Молекулы липидов обладают одним замечательным свойством: они полярные и имеют линейную структуру, причём толщина одного из концов молекулы больше, чем у другого. Поэтому молекулы липидов во взвеси самопроизвольно собираются в оболочки, близкие по форме к сферическим. Так что РНК, синтезирующие липиды, получили возможность окружать себя липидной оболочкой, значительно улучшившую устойчивость РНК к внешним факторам.

Постепенное увеличение длины РНК приводило к появлению многофункциональных РНК, отдельные фрагменты которых выполняли различные функции.

Первые деления клеток происходили, видимо, под действием внешних факторов. Синтез липидов внутри клетки приводил к увеличению её размеров и к потере прочности, так что большая аморфная оболочка разделялась на части под действием механических воздействий. В дальнейшем возник фермент, регулирующий этот процесс.

Строение клеток

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими. Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки - протопласт - отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка

Прокариоты (от лат. pro - перед, до и греч. κάρῠον - ядро, орех) - организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов - линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток - митохондрии и пластиды.

У прокариотических клеток есть цитоплазматическая мембрана, также как и эукариотических. У бактерий мембрана двуслойная (липидный бислой), у архей мембрана довольно часто бывает однослойной. Мембрана архей состоит из веществ, отличных от тех, из которых состоит мембрана бактерий. Поверхность клеток может быть покрыта капсулой, чехлом или слизью. У них могут быть жгутики и ворсинки.

Рис.1. Строение типичной клетки прокариот

Клеточное ядро, такое как у эукариот, у прокариот отсутствует. ДНК находится внутри клетки, упорядоченно свернутая и поддерживаемая белками. Этот ДНК-белковый комплекс называется нуклеоид. У эубактерий белки, которые поддерживают, ДНК отличаются от гистонов, которые образуют нуклеосомы (у эукариот). А у архибактерий гистоны есть, и этим они похожи на эукариот. Энергетические процессы у прокариотов идут в цитоплазме и на специальных структурах - мезосомах (выростах клеточной мембраны, которые закручены в спираль для увеличения площади поверхности, на которой происходит синтез АТФ). Внутри клетки могут находиться газовые пузырьки, запасные вещества в виде гранул полифосфатов, гранул углеводов, жировых капель. Могут присутствовать включения серы (образующейся, например, в результате бескислородного фотосинтеза). У фотосинтетических бактерий имеются складчатые структуры, называемые тилакоидами, на которых идет фотосинтез. Таким образом, у прокариот, в принципе, имеются те же самые элементы, но без перегородок, без внутренних мембран. Те перегородки, которые имеются, являются выростами клеточной мембраны.

Форма прокариотических клеток не так уж и разнообразна. Круглые клетки называются кокки. Такую форму могут иметь как археи, так и эубактерии. Стрептококки – это кокки, вытянутые в цепочку. Стафилококки – это «грозди» кокков, диплококки –кокки, объединенные по две клетки, тетрады - по четыре, и сарцины – по восемь. Палочкообразные бактерии называются бациллами. Две палочки – диплобациллы, вытянутые в цепочку – стрептобациллы. Еще выделяют коринеформные бактерии (с расширением на концах, похожим на булаву), спириллы (длинные завитые клетки), вибрионы (коротенькие загнутые клетки) и спирохеты (завиваются не так, как спириллы). Ниже проиллюстрировано все выше сказанное и приведены два представителя архебактерий. Хотя и археи, и бактерии относятся к прокариотическим (безядерным) организмам, строение их клеток имеет некоторые существенные отличия. Как уже было отмечено выше, бактерии имеют липидный бислой (когда гидрофобные концы погружены в мембрану, а заряженные головки торчат с двух сторон наружу), а археи могут иметь монослойную мембрану (заряженные головки имеются с двух сторон, а внутри единая целая молекула; эта структура может быть более жесткой, чем бислой). Ниже представлено строение клеточной мембраны архебактерии.

Эукариоты (эвкариоты) (от греч. ευ - хорошо, полностью и κάρῠον - ядро, орех) - организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты - прокариоты - митохондрии, а у водорослей и растений - также и пластиды.

Животная клетка

Строение клетки животного базируется на трех основных составляющих – ядро, цитоплазма и клеточная оболочка. Вместе с ядром цитоплазма образует протоплазму. Клеточная оболочка – это биологическая мембрана (перегородка), которая отделяет клетку от внешней среды, служит оболочкой для клеточных органоидов и ядра, образует цитоплазматические отсеки. Если поместить препарат под микроскоп, то строение животной клетки легко можно увидеть. Клеточная оболочка содержит три слоя. Внешний и внутренний слои белковые, а промежуточный – липидный. При этом липидный слой делится еще на два слоя – слой гидрофобных молекул и слой гидрофильных молекул, которые располагаются в определенном порядке. На поверхности клеточной мембраны располагается особая структура – гликокаликс, которая обеспечивает избирательную способность мембраны. Оболочка пропускает необходимые вещества и задерживает те, которые приносят вред.


Рис.2. Строение животной клетки

Строение животной клетки нацелено на обеспечение защитной функции уже на этом уровне. Проникновение веществ через оболочку происходит при непосредственном участии цитоплазматической мембраны. Поверхность этой мембраны достаточно значительна за счет изгибов, выростов, складок и ворсинок. Цитоплазматическая мембрана пропускает как мельчайшие частицы, так и более крупные. Строение животной клетки характеризуется наличием цитоплазмы, в большинстве своем состоящей из воды. Цитоплазма – это вместилище для органоидов и включений.

Кроме этого цитоплазма содержит и цитоскелет – белковые нити, которые участвуют в процессе деления клетки, отграничивают внутриклеточное пространство и поддерживают клеточную форму, способность сокращаться. Важная составляющая цитоплазмы – гиалоплазма, которая определяет вязкость и эластичность клеточной структуры. В зависимости от внешних и внутренних факторов гиалоплазма может менять свою вязкость – становиться жидкой или гелеобразной. Изучая строение животной клетки, нельзя не обратить внимание на клеточный аппарат – органоиды, которые находятся в клетке. Все органоиды имеют собственное специфическое строение, которое обусловлено выполняемыми функциями.

Ядро – центральная клеточная единица, которая содержит наследственную информацию и участвует в обмене веществ в самой клетке. К клеточным органоидам относятся эндоплазматическая сеть, клеточный центр, митохондрии, рибосомы, комплекс Гольджи, пластиды, лизосомы, вакуоли. Подобные органоиды есть в любой клетке, но, в зависимости от функции, строение животной клетки может отличаться наличием специфических структур.

Функции клеточных органоидов: - митохондрии окисляют органические соединения и аккумулируют химическую энергию; - эндоплазматическая сеть благодаря наличию специальных ферментов синтезирует жиры и углеводы, ее каналы способствуют транспорту веществ внутри клетки; - рибосомы синтезируют белок; - комплекс Гольджи концентрирует белок, уплотняет синтезированные жиры, полисахариды, образует лизосомы и готовит вещества к выведению их из клетки или непосредственному использованию внутри нее; - лизосомы расщепляют углеводы, белки, нуклеиновые кислоты и жиры, по сути, переваривая поступающие в клетку питательные вещества; - клеточный центр участвует в процессе деления клетки; - вакуоли, благодаря содержанию клеточного сока, поддерживают тургор клетки (внутреннее давление).

Строение клетки живого чрезвычайно сложно - на клеточном уровне протекает множество биохимических процессов, которые в совокупности обеспечивают жизнедеятельность организма.



Клетка – элементарная единица живой системы. Различные структуры живой клетки, которые отвечают за выполнение той или иной функции, получили название органоидов, подобно органам целого организма. Специфические функции в клетке распределены между органоидами, внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др.

Клеточные структуры:

Цитоплазма . Обязательная часть клетки, заключенная между плазматической мембраной и ядром. Цитозоль – это вязкий водный раствор различных солей и органических веществ, пронизанный системой белковых нитей – цитоскелетам. Большинство химических и физиологических процессов клетки проходят в цитоплазме. Строение: Цитозоль, цитоскелет. Функции: включает различные органоиды, внутренняя среда клетки
Плазматическая мембрана . Каждая клетка животных, растений, ограничена от окружающей среды или других клеток плазматической мембраной. Толщина этой мембраны так мала (около 10 нм.), что ее можно увидеть только в электронный микроскоп.

Липиды в мембране образуют двойной слой, а белки пронизывают всю ее толщину, погружены на разную глубину в липидный слой или располагаются на внешней и внутренней поверхности мембраны. Строение мембран всех других органоидов сходно с плазматической мембраной. Строение: двойной слой липидов, белки, углеводы. Функции: ограничение , сохранение формы клетки, защита от повреждений, регулятор поступления и удаления веществ.

Лизосомы . Лизосомы – это мембранные органоиды. Имеют овальную форму и диаметр 0,5 мкм. В них находится набор ферментов, которые разрушают органические вещества. Мембрана лизосом очень прочная и препятствует проникновению собственных ферментов в цитоплазму клетки, но если лизосома повреждается от каких-либо внешних воздействий, то разрушается вся клетка или часть ее.
Лизосомы встречаются во всех клетках растений, животных и грибов.

Осуществляя переваривание различных органических частиц, лизосомы обеспечивают дополнительным «сырьем» химические и энергетические процессы в клетке. При голодании клетки лизосомы переваривают некоторые органоиды, не убивая клетку. Такое частичное переваривание обеспечивает клетке на какое-то время необходимый минимум питательных веществ. Иногда лизосомы переваривают целые клетки и группы клеток, что играет существенную роль в процессах развития у животных. Примером может служить утрата хвоста при превращении головастика в лягушку. Строение: пузырьки овальной формы, снаружи мембрана, внутри ферменты. Функции: расщепление органических веществ, разрушение отмерших органоидов, уничтожение отработавших клеток.

Комплекс Гольджи . Поступающие в просветы полостей и канальцев эндоплазматической сети продукты биосинтеза концентрируются и транспортируются в аппарате Гольджи. Этот органоид имеет размеры 5–10 мкм.

Строение : окруженные мембранами полости (пузырьки). Функции: накопление, упаковка, выведение органических веществ, образование лизосом

Эндоплазматическая сеть
. Эндоплазматическая сеть является системой синтеза и транспорта органических веществ в цитоплазме клетки, представляющая собой ажурную конструкцию из соединенных полостей.
К мембранам эндоплазматической сети прикреплено большое число рибосом – мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм. и состоящих из РНК и белка. На рибосомах и происходит синтез белка. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. Полости, канальцы, трубочки из мембран, на поверхности мембран рибосомы. Функции: синтез органических веществ с помощью рибосом, транспорт веществ.

Рибосомы
. Рибосомы прикреплены к мембранам эндоплазматической сети или свободно находятся в цитоплазме, они располагаются группами, на них синтезируются белки. Состав белка, рибосомальная РНК Функции: обеспечивает биосинтез белка (сборку белковой молекулы из ).
Митохондрии . Митохондрии – это энергетические органоиды. Форма митохондрий различна, они могут быть остальными, палочковидными, нитевидными со средним диаметром 1 мкм. и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятки тысяч в летательных мышцах насекомых. Митохондрии снаружи ограничены внешней мембраной, под ней – внутренняя мембрана, образующая многочисленные выросты – кристы.

Внутри митохондрий находятся РНК, ДНК и рибосомы. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

Мембрана, матрикс, выросты – кристы. Функции: синтез молекулы АТФ, синтез собственных белков, нуклеиновых кислот, углеводов, липидов, образование собственных рибосом.

Пластиды
. Только в растительной клетке: лекопласты, хлоропласты, хромопласты. Функции: накопление запасных органических веществ, привлечение насекомых-опылителей, синтез АТФ и углеводов. Хлоропласты по форме напоминают диск или шар диаметром 4–6 мкм. С двойной мембраной – наружней и внутренней. Внутри хлоропласта имеются ДНК рибосомы и особые мембранные структуры – граны, связанные между собой и с внутренней мембраной хлоропласта. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке для лучшего улавливания света. В мембранах гран находится хлорофилл, благодаря ему происходит превращение энергии солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза органических соединений, в первую очередь углеводов.
Хромопласты . Пигменты красного и желтого цвета, находящиеся в хромопластах, придают различным частям растения красную и желтую окраску. моркови, плоды томатов.

Лейкопласты являются местом накопления запасного питательного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут превращаться в хлоропласты (в результате чего клетки картофеля зеленеют). Осенью хлоропласты превращаются в хромопласты и зеленые листья и плоды желтеют и краснеют.

Клеточный центр . Состоит из двух цилиндров, центриолей, расположенных перпендикулярно друг другу. Функции: опора для нитей веретена деления

Клеточные включения то появляются в цитоплазме, то исчезают в процессе жизнедеятельности клетки.

Плотные, в виде гранул включения содержат запасные питательные вещества (крахмал, белки, сахара, жиры) или продукты жизнедеятельности клетки, которые пока не могут быть удалены. Способностью синтезировать и накапливать запасные питательные вещества обладают все пластиды растительных клеток. В растительных клетках накопление запасных питательных веществ происходит в вакуолях.

Зерна, гранулы, капли
Функции: непостоянные образования, запасающие органические вещества и энергию

Ядро
. Ядерная оболочка из двух мембран, ядерный сок, ядрышко. Функции: хранение наследственной информации в клетке и ее воспроизводство, синтез РНК – информационной, транспортной, рибосомальной. В ядерной мембране находятся споры, через них осуществляется активный обмен веществами между ядром и цитоплазмой. В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать к ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. В ядре присутствует ядрышко. Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.

Общие сведения

Клеточная теория - основополагающая для биологии теория, сформулированная в середине XIX века , предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения . Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию , основываясь на множестве исследований оклетке (1838 ). Рудольф Вирхов позднее (1858 ) дополнил её важнейшим положением (всякая клетка происходит от другой клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма . Клетки животных , растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Клеточная теория дополнялась и редактировалась с каждым разом.

Положения клеточной теории Шлейдена-Шванна

    Все животные и растения состоят из клеток.

    Растут и развиваются растения и животные путём возникновения новых клеток.

    Клетка является самой маленькой единицей живого, а целый организм - это совокупность клеток.

Основные положения современной клеточной теории

    Клетка - это элементарная, функциональная единица строения всего живого. (Кроме вирусов , которые не имеют клеточного строения)

    Клетка - единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц - органоидов.

    Клетки всех организмов гомологичны .

    Клетка происходит только путём деления материнской клетки.

    Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом.

    Клетки многоклеточных организмов тотипотентны .

    Клетка может возникнуть лишь из предшествующей клетки.

Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

    Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см. ниже).

    В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот («каждая молекула из молекулы»). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов - кмитохондриям , хлоропластам , генам и хромосомам .

    Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

    Клетки многоклеточных тотипотентны, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

XVII век

1665 год - английский физик Р. Гук в работе «Микрография» описывает строение пробки, на тонких срезах которой он нашёл правильно расположенные пустоты. Эти пустоты Гук назвал «порами, или клетками». Наличие подобной структуры было известно ему и в некоторых других частях растений.

1670-е годы - итальянский медик и натуралист М. Мальпиги и английский натуралист Н. Грю описали в разных органах растений «мешочки, или пузырьки» и показали широкое распространение у растений клеточного строения. Клетки изображал на своих рисунках голландский микроскопист А. Левенгук . Он же первым открыл мир одноклеточных организмов - описал бактерий и протистов (инфузорий).

Исследователи XVII века, показавшие распространённость «клеточного строения» растений, не оценили значение открытия клетки. Они представляли клетки в качестве пустот в непрерывной массе растительных тканей. Грю рассматривал стенки клеток как волокна, поэтому он ввёл термин «ткань», по аналогии с текстильной тканью. Исследования микроскопического строения органов животных носили случайный характер и не дали каких-либо знаний об их клеточном строении.

XVIII век

В XVIII веке совершаются первые попытки сопоставления микроструктуры клеток растений и животных. К. Ф. Вольф в работе «Теории зарождения» (1759) пытается сравнить развитие микроскопического строения растений и животных. По Вольфу, зародыш как у растений, так и у животных развивается из бесструктурного вещества, в котором движения создают каналы (сосуды) и пустоты (клетки). Фактические данные, приводившиеся Вольфом, были им ошибочно истолкованы и не прибавили новых знаний к тому, что было известно микроскопистам XVII века. Однако его теоретические представления в значительной мере предвосхитили идеи будущей клеточной теории.

XIX век

В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз ).

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Г. Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

Ф. Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье

В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу.

Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками» (для некоторых животных структур в его школе применялся термин «клетка»).

В 1837 году Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее установить гомологию клеток растений и клеток животных Пуркинье не смог:

    во-первых, под зёрнышками он понимал то клетки, то клеточные ядра;

    во-вторых, термин «клетка» тогда понимался буквально как «пространство, ограниченное стенками».

Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле).

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором он дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле . Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории - соответствие клеток растений и элементарных структур животных - была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты.

В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории:

    В первой части книги он рассматривает строение хорды и хряща, показывая, что их элементарные структуры - клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма - это тоже клетки, вполне сравнимые с клетками хряща и хорды.

    Во второй части книги сравниваются клетки растений и клетки животных и показывается их соответствие.

    В третьей части развиваются теоретические положения и формулируются принципы клеточной теории. Именно исследования Шванна оформили клеточную теорию и доказали (на уровне знаний того времени) единство элементарной структуры животных и растений. Главной ошибкой Шванна было высказанное им вслед за Шлейденом мнение о возможности возникновения клеток из бесструктурного неклеточного вещества.


© 2024
polyester.ru - Журнал для девушек и женщин