17.06.2022

Реактор большой мощности канальный. Рбмк реактор большой мощности канальный Масса циркониевой части технологического канала реактора рбмк


Необходимо для понимания дальнейшего коротко рассказать, что такое атомный реактор вообще и реактор РБМК в частности.

Атомный реактор электростанций – это аппарат для преобразования ядерной энергии в тепловую. Топливом в подавляющем большинстве реакторов служит слабообогащенный уран. В природе химический элемент уран состоит из двух его изотопов: 0,7 % изотоп с атомным весом 235, остальное – изотоп с атомным весом 238. Топливом является только изотоп урана-235. При захвате (поглощении) нейтрона ядром урана-235 оно становиться неустойчивым и по житейским меркам мгновенно распадается на две, в основном неравные, части с выделением большого количества энергии. В каждом акте деления ядра энергии выделяется в миллионы раз больше, чем при сгорании молекулы нефти или газа. В таком большом реакторе, как Чернобыльский, при работе на полной мощности «сгорает» около четырех килограммов урана за сутки.

Выделяемая при каждом делении ядра урана энергия реализуется следующим образом: основная часть – в виде кинетической энергии «осколков» деления, которые в процессе торможения передают её практически всю в твэле реактора и в его конструктивной оболочке. Выход за оболочку сколько-нибудь заметной части осколков недопустим. Если посмотрим на таблицу Менделеева, то увидим, что ядра осколков деления имеют явный избыток нейтронов для того, чтобы быть стабильными. Поэтому в результате цепочк радиационного загрязнения территории при аварии после разрушения и выброса при взрыве твэлов.

После прекращения цепной реакции, при остановке реактора, остаточные тепловыделения от распада продуктов деления ещё длительное время вынуждают охлаждать твэлы.

При каждом делении ядра урана испускается два-три, в среднем около двух с половиной, нейтрона. Их кинетическая энергия поглощается замедлителем, топливом и конструктивными элементами реактора, затем передаётся теплоносителю.

Как раз нейтроны-то и делают возможным осуществлять цепную реакцию деления ядер урана-235. Если один нейтрон от каждого деления вызовет новое деление, то интенсивность реакции сохранится на одном уровне.

Большая часть нейтронов испускается немедленно при делении ядра. Это мгновенные нейтроны. Малая часть, около 0,7 %, через небольшой промежуток времени, через секунды и десятки секунд, – запаздывающие нейтроны. Они позволяют управлять интенсивностью реакции деления урана и регулировать мощность реактора. В противном случае существование энергетических реакторов становилось бы проблематичным – только атоне видим.

Обычно в энергетических реакторах используют не природный, а несколько обогащённый изотопом-235 уран. Но всё-таки большая часть – это уран-238 и потому значительное ккже способный делиться при поглощении тепловых нейтронов, как и уран-235. Свойства плутония как топлива отличаются от урана и при достаточном его накоплении после длительной работы реактора несколько изменяют физику реактора. Выброшенный при аварии плутоний также вносит свою лепту в загрязнение территории. Причём надежды на его распад нет никакой (период полураспада плутония-239 более 24 тыс. лет), только миграция вглубь земли. Присутствуют и другие изотопы плутония. Свойства урана-235:

– делиться при поглощении его ядром теплового (с малой энергией) нейтрона;

– выделять при этом большое количество энергии;

– испускать при делении нейтроны, необходимые для самоподдерживающейся реакции.

Уран-235 является основой создания атомных энергетических реакторов.

Почти все реакторы АЭС работают на тепловых нейтронах, т.е. нейтронах с малой кинетической энергией. Нейтроны после деления урана или плутония претерпевают стадии замедления, диффузии и захвата ядрами топлива и конструктивных материалов. Часть нейтронов вылетает за пределы активной зоны – утечка. Одновременно происходит большое количество делений, и, следовательно, в работающем реакторе всегда в наличии большое количество нейтронов, составляющих нейтронный поток, нейтронное поле. Выгорание ядер топлива происходит медленно, и поэтому в достаточно длительный промежуток времени количество топлива в реакторе можно считать неизменным. Тогда число поглощённых топливом нейтронов, а при этом и число разделившихся ядер и количество получаемой энергии, будет прямо пропорционально нейтронному потоку в активной зоне. Фактически задача операторов сводится к измерению и поддержанию нейтронного потока согласно требованиям по поддержанию мощности.

Если условно разбить нейтроны деления на последовательные поколения (условность в следующем – поскольку деление происходит несогласованно, то это аналогично движению неорганизованной толпы, а не шагам армейской колонны) с количеством нейтронов № 1, № 2 и так далее, то при равенстве числа нейтронов каждого поколения мощность реактора будет постоянной, такой реактор будет называться критичным и коэффициент размножения нейтронов, равный отношению числа нейтронов последующего поколения к предыдущему, равен единице. При коэффициенте размножения больше единицы число нейтронов и мощность непрерывно возрастают – реактор надкритичный. Чем больше коэффициент размножения, тем больше скорость нарастания мощности, причём мощность нарастает со временем не линейно, а по экспоненте. В оперативной работе пользуютсяой точностью представляется равной (К-1). В обычной практике оператор имеет дело с реактором, надкритичность или положительная реактивность которого составляет не более одной десятой процента. При большей реактивности скорость нарастания мощности становится слишком большой, опасной для целостности реактора и обслуживающих систем. Все энергетические реакторы имеют автоматическую АЗ, глушащую реактор при большой скорости увеличения мощности. На реакторе РБМК АЗ срабатывала при скорости возрастания мощности в два раза за время 20 с.

Важнейший момент. При делении ядра урана примерно 0,7 % нейтронов рождаются не при делении, а с некоторым запаздыванием. Они входят в общее число нейтронов данного поколения и тем самым увеличивают время жизни поколения нейтронов. Доля запаздывающих нейтронов обычно обозначается р. Если избыточная (положительная) реактивность достигает (и больше) величины р, то реактор становится критичным только на мгновенных нейтронах, скорость сменяемости поколений которых велика – определяется временем замедления и диффузии нейтронов, и поэтому скорость увеличения мощности очень большая. Защиты в этом случае нет – только разрушение реактора может прервать цепную реакцию. Так было 26 апреля 1986 г. на четвёртом блоке Чернобыльской АЭС. Фактически из-за наработки в активной зоне плутония и различия в свойствах мгновенных и запаздывающих нейтронов в реакторе

Реактор РБМК-1000 – это реактор канального типа, замедлитель нейтронов – графит, теплоноситель – обычная вода. Топливная кассета набирается из 36 твэлов по три с половиной метра длиной. Твэлы с помощью дистанционирующих решёток, закреплённых на центральном несущем стержне, размещаются на двух окружностях: на внутренней 6 штук и на внешней 12 штук.

Каждая кассета состоит из двух ярусов по высоте. Таким образом, активная зона имеет высоту семь метров. Каждый твэл набирается из таблеток UO 2 размещённых в герметичной трубе из сплава циркония с ниобием. В отличие от корпусных реакторов, где все топливные кассеты располагаются в общем корпусе, рассчитанном на полное рабочее давление, в реакторе РБМК каждая кассета размещена в отдельном технологическом канале, представляющем собой трубу диаметром 80 мм.

Активная зона реактора РБМК высотой 7 и диаметром 11,8 м набрана из 1 888 графитовых колонн с центральными отверстиями каждая, куда установлены каналы. Из этого числа 1 661 – технологические каналы с топливными кассетами, остальные – каналы СУЗ, где размещены 211 поглощающих нейтроны стержней и 16 датчиков контроля. Каналы СУЗ равномерно распределены по активной зоне в радиальном и азимутальном направлениях.

Снизу к технологическим каналам подводится теплоноситель – обычная вода под высоким давлением, охлаждающая твэлы. Вода частично испаряется и в виде пароводяной смеси сверху отводится в барабан-сепараторы, где пар отделяется и поступает на турбины. Вода из барабан-сепараторов при помощи ГЦН вновь подаётся на вход в технологические каналы. Пар после отработки в турбинах конденсируется и возвращается в контур теплоносителя. Таким образом, замыкается контур циркуляции воды.

Если принять конструкцию активной зоны заданной, посмотрим куда деваются нейтроны деления. Часть нейтронов уходит за пределы активной зоны и теряется безвозвратно. Часть нейтронов поглощается замедлителем, теплоносителем, конструкционными материалами и продуктами деления топливных ядер. Это бесполезная утрата нейтронов. Остальные поглощаются топливом. Для поддержания постоянной мощности количество поглощаемых топливом нейтронов также должно быть неизменным. Следовательно, из испускаемых при каждом делении топливного ядра двух с половиной (в среднем) нейтронов на утечку и захват неделящимися материалами мы можем терять полтора нейтрона. Это будет критичный реактор.

Такой реактор работать не может, хотя бы по следующей причине: при делении урана образуются ядра различных химических элементов и среди них в значительном количестве ксенон с атомным весом 135, обладающий очень большим сечением поглощения нейтронов. При подъёме мощности начинает образовываться ксенон, и реактор заглохнет. Так и было с первым американским реактором. Э. Ферми посчитал сечение захвата нейтронов ядром ксенона и в шутку сказал, что ядро получается величиной с апельсин.

Для компенсации этого и других эффектов топливо в реактор загружают с избытком, что при постоянной утечке нейтронов и поглощении их неделящимися материалами увеличивает долю поглощения топливом. Чтобы не происходило постоянного наращивания мощности такого реактора, в активную зону вводят так называемые органы воздействия на реактивность, содержащие материалы, интенсивно поглощающие нейтроны. Методы компенсации могут быть различные, мы рассмотрим их только на примере РБМК.

В каналах СУЗ размещаются стержни, содержащие сильный поглотитель нейтронов – бор, с помощью которого и поддерживается нужный баланс нейтронов и, следовательно, мощность реактора. При необходимости увеличения мощности часть стержней выводится полностью или частично из активной зоны, в результате чего увеличивается доля нейтронов, поглощаемых топливом, мощность возрастает и стержни по достижении нужного уровня мощности вновь вводятся в активную зону. Как правило, новое положение стержней управления не идентично исходному – это зависит от изменения реактивности активной зоны при изменении мощности – от мощностного коэффициента реактивности. При необходимости уменьшения мощности в активную зону вводят стержни, т.е. вводят отрицательную реактивность, реактор становится подкритичным и мощность начинает уменьшаться. На новом уровне мощность стабилизируется изменением положения стержней. Всё это осуществляется АР. Оператор нажатием кнопки изменяет уровень заданной мощности, а остальное – дело регулятора. Правда, в случае с реактором РБМК это не совсем так, а иногда и совсем не так, – оператор вынужден своим вмешательством корректировать работу регулятора в основном по установлению энерговыделения в той или иной части зоны.

Во вновь построенном реакторе технологические каналы загружаются свежими невыгоревшими топливными кассетами. Если все 1 661 канал загрузить кассетами, то коэффициент размножения будет столь велик, что погасить его имеющимися стержнями управления будет невозможно. Поэтому около 240 технологических каналов вместо топливных кассет загружаются специальными стержнями-поглотителями нейтронов. И ещё несколько сотен поглотителей размещаются в отверстиях центральных несущих стержней топливных кассет. По мере выгорания топлива эти поглотители постепенно извлекаются и заменяются топливными кассетами. При извлечении всех поглотителей поддержание нужной реактивности активной зоны осуществляется заменой наиболее выгоревших кассет свежими. Наступает режим стационарных перегрузок.

В реакторе РБМК топливные кассеты заменяются при работе реактора на мощности специальной разгрузочно-загрузочной машиной. В это время активная зона содержит полностью выгоревшие кассеты, свежие и с промежуточным выгоранием. Вот на этот режим и рассчитано количество стержней управления и защиты.

Каждый стержень СУЗ вносит какую-то реактивность, что зависит от его местоположения в зоне и формы нейтронного поля. В реакторе РБМК реактивность принято измерять в стержнях, эффективность одного стержня условно принята 0,05 %. Как уже пояснялось, скорость увеличения мощности реактора тем больше, чем больше его положительная реактивность. Скорость уменьшения мощности также больше при большей внесённой отрицательной реактивности.

В результате нарушений режима и неисправностей в системах возникает необходимость во избежание повреждений быстро заглушить реактор. Поэтому количество стержней СУЗ всегда должно быть с избытком для приведения реактора в состояние с нужной подкритичностью. Когда реактор находится в критическом состоянии (критическое значит не катастрофическое, а что его коэффициент размножения равен единице и, соответственно, реактивность равна нулю), обязательно должно быть не менее какого-то количества стержней выведено из активной зоны и готово к немедленному вводу в зону для прекращения цепной реакции деления. И чем больше стержней выведено из активной зоны, тем больше уверенности, что реактор при необходимости будет заглушён быстро, с большой подкритичностью. Это верно для всех реакторов, спроектированных согласно требованиям норм и правил безопасности.

Во всех реакторах тем или иным путём часть органов воздействия на реактивность введена в реактор – это необходимо для маневрирования мощностью. К примеру, при вынужденном частичном снижении мощности временно увеличивается количество ксенона (говорят, что реактор отравлен ксеноном), увеличение количества поглотителя нейтронов нужно скомпенсировать выводом из зоны части оперативно извлекаемого поглотителя. Иначе реактор придётся заглушить и ждать распада ксенона.

В реакторе РБМК при работе часть стержней СУЗ находится частично или полностью в активной зоне и подавляет (компенсирует) какую-то избыточную реактивность. Теперь определимся с понятием ОЗР.

Оперативный запас реактивности – это положительная реактивность, которую реактор имел бы при всех извлечённых стержнях СУЗ.

Как и нормальным реакторам, реактору РБМК запас реактивности также необходим для манёвра мощностью. Ещё после аварии в 1975 г. на первом блоке Ленинградской АЭС для РБМК был определён минимальный запас реактивности в 15 стержней исходя из необходимости регулирования энерговыделения в активной зоне. А после чернобыльской аварии была найдена совершённая дикость, абсурд – при малом запасе АЗ не глушит, а разгоняет реактор. Чем меньше запас реактивности, тем более ядерноопасен РБМК?! Знай наших!.. Мы не как другие прочие.

Ещё реакторов с такими свойствами нет. Можно понять, что АЗ не справилась с глушением реактора, но чтобы сама разгоняла реактор – такого и в кошмарном сне не привидится.

Как и ОЗР, в тексте часто будут упоминаться паровой эффект реактивности и мощностной коэффициент реактивности. Уясним понятия.

Пусть реактор работает на какой-то мощности при неизменном расходе теплоносителя. В технологическом канале вода нагревается до кипения и появляется пар. По мере продвижения в канале всё больше воды, отбирающей тепло у твэлов, превращается в пар. Таким образом, в стационарном режиме имеем в пределах активной зоны какое-то количество пара. Теперь увеличим мощность реактора. Количество тепла возрастает и, следовательно, будет в активной зоне больше водяного пара. Каким образом это повлияет на реактивность активной зоны – в сторону уменьшения или увеличения – зависит от соотношения в зоне ядер замедлителя и топлива. Вода также является замедлителем нейтронов, как и графит, и с увеличением количества пара в активной зоне становится меньше воды. Проектанты, видимо, исходя из экономических соображений, выбрали соотношение ядер замедлителя и топлива в РБМК таким, чтобы полная замена воды паром вела к увеличению реактивности на пять-шесть р.

Чем это страшно? К примеру, при разрыве трубы теплоносителя диаметром 800 мм обезвоживание наступает через несколько секунд и тихоходная АЗ не справилась бы с выделившейся реактивностью. Взрыв, как и 26 апреля. Это не всё. При увеличении мощности температура топлива всегда возрастает и это ведёт к уменьшению реактивности. В реакторе РБМК при изменении мощности, в основном, два фактора влияют на реактивность: отрицательный температурный эффект топлива и положительный паровой эффект. Они и составляют быстрый мощностной коэффициент реактивности – изменение реактивности при изменении мощности на один мегаватт (или киловатт). Другие эффекты изменения реактивности в зависимости от мощности: температурный эффект графита и отравление реактора ксеноном, хотя и имеют существенную величину, проявляются с большим запаздыванием и на динамику не влияют. У правильно сконструированного реактора мощностной коэффициент должен быть отрицательным. Это означает, что при каком-либо возмущении возрастает реактивность, с ней начинает увеличиваться мощность, а это ведёт к уменьшению реактивности и мощность стабилизируется, хотя и на более высоком уровне. У реактора РБМК мощностной коэффициент был положительным в большом диапазоне мощностей – в нарушение требований нормативных документов. Это прямо повлияло на возникновение аварии 26 апреля.

В качестве тепловыделяющего элемента в реакторе РБМК-1000 используется закрытая с обоих концов циркониевая трубка диаметром 13,9 мм, толщиной стенки 0,9 мм и длиной около 3,5 м, заполненная таблетками топлива диаметром 11,5 мм и высотой 15 мм. Для уменьшения величины термического расширения топливного столба, таблетки имеют лунки. Начальная среда под оболочкой заполнена гелием под давлением 5кгс/см 2. Топливный столб фиксируется пружиной. Максимальная температура в центре топливной таблетки может достигать 2100ºС. Реально эта температура не выше 1600ºС, давление гелия до 17 кгс/см 2 , а температура наружней поверхности оболочки ТВЭЛ около 300°С.

Тепловыделяющие элементы (твэлы) компонуются в тепловыделяющие сборки (ТВС) по 18 штук в каждой; 6 штук по окружности диаметром 32 мм и 12 штук – диаметром 62 мм. В центре – несущий стержень (см. рис. 2.14, сечение Б-Б). ТВЭЛы в сборке скреплены через каждые полметра специальными дистанционирующими решетками.

Основным топливным блоком реактора является тепловыделяющая (или рабочая) кассета, она состоит из двух ТВС, соединенных общим несущим стержнем, штанги, наконечника и хвостовика. Таким образом, часть кассеты, располагающаяся в активной зоне, имеет длину около 7м.

Кассеты омываются водой, при этом нет прямого контакта топлива с теплоносителем при нормальном режиме работы реактора.

Для получения приемлемого коэффициента полезного действия атомной станции необходимо иметь возможно более высокую температуру и давление генерируемого реактором пара. Следовательно, должен быть предусмотрен корпус, удерживающий теплоноситель при этих параметрах. Такой корпус является основным конструктивным элементом реакторов типа ВВЭР. Для реакторов РБМК роль корпуса играет большое количество прочных трубопроводов, внутри которых и размещаются кассеты. Такой трубопровод называется технологическим каналом (ТК), в пределах активной зоны он циркониевый и имеет диаметр 88 мм при толщине стенки 4 мм, в РБМК-1000 1661 технологических канала.

Рис. 1.14. Тепловыделяющая сборка реактора РБМК

Технологический канал (см. рис. 1.13) предназначен для размещения ТВС и организации потока теплоносителя.

Корпус канала представляет собой сварную конструкцию, состоящую из средней и концевых частей. Средняя часть канала выполнена из циркониевого сплава, концевые из нержавеющей стали. Между собой они соединены переходниками сталь-цирконий. Корпус канала рассчитан на 23 года безаварийной работы, однако при необходимости на остановленном реакторе может быть извлечен дефектный корпус канала и на его место установлен новый.

Топливная кассета устанавливается внутри канала на подвеске, которая удерживает ее в активной зоне и позволяет с помощью РЗМ производить замену отработанной кассеты без останова реактора. Подвеска снабжена запорной пробкой, которая герметизирует канал.

Кроме того, в реакторе размещены каналы управления и защиты. В них располагаются стержни поглотители, датчики контроля энерговыделения. Размещение каналов управления в колоннах графитовой кладки автономно от технологических каналов.

Пространство между графитом и каналами заполнено газом, имеющим хорошую теплопроводность, малую теплоемкость и не оказывающим существенного влияния на ход цепной реакции. Лучшим с этой точки зрения газом является гелий. Однако из-за его высокой стойкости он применяется не в чистом виде, а в смеси с азотом (на номинальном уровне мощности 80% гелия и 20% азота, при меньшей мощности азота больше, при 50% номинальной может быть уже чистый азот).

Одновременно предотвращается контакт графита с кислородом, т.е. его окисление. Азотно-гелиевая смесь в графитовой кладке продувается в направлении снизу вверх, это делается для достижения третьей цели – контроля целостности технологических каналов. Действительно, при течи ТК влажность газа на выходы из кладки и его температура увеличивается.

Для улучшения теплопередачи от графита к каналу при движении газа создается своеобразный лабиринт (см. рис. 1.15). На канал и отверстия блоков поочередно надеваются разрезные графитовые кольца высотой 20 мм каждое на участке 5,35 м в центре активной зоны. Таким образом, газ движется по схеме: графит – разрез кольца – стенка канала – разрез кольца – графит.

Увлекаясь промышленностью как с позиции истории, так и с эстетической точки зрения, сложно не уделять внимания атомным станциям. Ну а интересуясь исследованием заброшенных промышленных объектов, практически невозможно не мечтать побывать на заброшенной АЭС.

Отрасль атомной энергетики достаточно молода, и потому найти по-настоящему заброшенную АЭС, пребывание на которой не будет опасным с позиции рисков нахватать радиации, довольно сложно, если не невозможно. Поэтому эстетам остаётся довольствоваться наследием 1990-х в лице недостроенных атомных станций, заброшенные стройплощадки которых раскиданы по просторам бывшего СССР. Благо что информация об энергоблоках, не введённых в эксплуатацию из-за прекращения строительства, открыта широкой общественности вплоть до координат и сведений о стадии готовности.

В сегодняшнем своём обзоре я покажу вам как раз одну из таких остановленных атомных строек. Эдакий безопасный Чернобыль.

Ночь - наш друг.
Темнота позволяет заметить то, на что не обратишь внимания днём.
Полная луна как будто дарит возможность видеть в этой темноте.
Ну а тёплая летняя ночь даёт возможность приготовиться к предрассветной прогулке, наблюдая с ближайшей крыши за объектом интереса - огромной и мёртвой стройкой атомной станции.

Понадобилось немало лет для того, чтобы продолжение замороженного строительства оказалось признано нецелесообразным, и недостроенная атомная станция превратилась в полноценную заброшку. Ржавый гигантский кран КП-640, аналогичный использовавшемуся на Чернобыльской АЭС, увы так и пропал без дела...

Дождавшись рассвета, заходим на заросшую кустами территорию и обходим станцию вокруг, проходя мимо огромных трансформаторов размером с товарный вагон.

Находим пустующий дверной проём и оказываемся внутри недостроя. Из окна видим действующую АЭС - хорошо охраняемую и недосягаемую.

Стадия готовности этого энергоблока, по информации из сети, достаточно высокая - реакторный и машинный залы почти готовы. Однако, всё остальное представляет из себя бесконечный лабиринт бетонных этажей, лестниц и пустых помещений с нередкими следами творчества строителей

Разнообразия бесконечному бетону добавляют защитно-герметические двери - здесь их сотни! Причем самых разных размеров, толщины и моделей

Первой задачей выбираем посещение крыши станции - отличное место, чтобы встретить рассвет

Солнце подкрашивает сквозные коридоры в ядерно-рыжий

И вот - мы на крыше.
Перед нами труба - точь в точь такая же, как возвышалась над атомной станцией в Припяти. Ту чернобыльскую трубу срезали, т.к. она мешала надвинуть новый саркофаг... А эта никому не мешает:) Было бы здорово на неё подняться, но решаем оставить эту авантюру для последователей, т.к. не хочется раньше времени быть замеченными сторожем стройплощадки.

Почти все видели фото этой трубы снаружи, но мало кто заглядывал под неё изнутри. Вот такая она - огромная вентиляционная шахта энергоблока.

Логично было бы предположить, что труба возвышается чётко над реактором, - но нет. Т.к. функция её общая для двух энергоблоков, стоит она чётко между ними, а непосредственно под собой имеет бетонную площадку технического этажа

Крыша станции - лишь одна из трёх целей этой прогулки.
Теперь наша задача отыскать в этом бетонном лабиринте способы попасть в машинный и реакторный залы.
Это оказалось непросто...

Один из залов, по размерам напоминающий заводской цех

Обширные дыры в полу, какие-то ниши и сквозные проёмы до самого нижнего уровня... Но проход к ключевым узлам станции найти никак не получается.

Переходя с этажа на этаж, из помещения в помещение, мы всё ближе приходили к пониманию, что ходим по кругу.

Нет, всё это конечно же очень впечатляет - огромные вентиляторы размером с тепловоз, высокие потолки, широкие залы и множество красивых защитных дверей

Вот здесь нам, к примеру, попался аналог ФВУ в убежищах - фильтро-вентиляционная установка. Разобранная...

И почти целая:)

Системы вентиляции на АЭС заслуживают, определённо, отдельного внимания - их много, они огромные и находятся повсюду

Агрегаты, напоминающие огромные кондиционеры

Многоэтажные и мощные лёгкие этого гиганта

Всё это здорово, конечно, но мы снова и снова возвращаемся к тому, с чего начали.

Решаем начать поиски сначала и снова выглядываем наружу. Солнце уже встало и шпарит, хотя день едва начался. Снаружи здания становится ясно, где что находится одно относительно от другого, где находимся мы и куда нам нужно

Входов и выходов много, через них можно попадать в разные участки этого ядерного комплекса, которые соединяются друг с другом различными лесенками и переходами

Некоторые лесенки совсем узкие и откровенно стрёмные, ощущение присутствия на стройке - 100%

Двери-двери-двери - огромные, разные, очень крутые.

Даже такие вот здоровенные

Находим несколько обширных залов с оборудованием высокого давления

Логика и поверхностные знания об устройстве АЭС подсказывают, что где-то рядом должен быть машинный зал

И вот, за очередным поворотом нашему взору открывается огромное пространство машинного зала! Он прекрасен

Не торопясь спускаться вниз, гуляем по мосткам и балкам у потолка, выясняя наличие жизни в этом индустриальном раю

Наконец, замечаем признаки присутствия сторожа и решаем, что рисковать и спускаться к нему не стоит - ведь реактор мы до сих пор не нашли.

Возвращаемся в бетонно-тленную часть и, наконец, на одном этажей находим схему планировки и конфигурацию помещений относительно реактора с учётом высотной отметки. Полезная находка!

Сразу многое становится ясно, и поиски перестают быть бессмысленными шатаниями из тлена в тлен

Вместо пустых помещений начинают встречаться такие вот комнаты с оборудованием

Здесь должны были появиться фоняшки, но их на станцию завезти не успели. Вероятно, это какие-то грязные трубки для грязной воды:)

Судя по количеству всех этих трубок и каналов, мы уже где-то совсем близко к цели

Нержавейка сияет в свете фонарика и выглядит впечатляюще, но недостаточно круто, чтобы удовлетворить наш интерес

Сотни трубочек изгибаются и зовут за собой, но иногда внезапно заканчиваются

За очередным поворотом попадаем в большой зал с совсем другими трубами - большими и зелёными. На стене замечаем очередной привет от строителей - нарисованную кошку(?)

В этом помещении несколько уровней, и всё вокруг зелёное!

Огромные бочки сепараторов, за которыми переход в другие помещения

Здесь становится менее просторно, но по-прежнему можно перемещаться в полный рост

Понимаем, что ходим буквально вокруг реактора!

РБМК-1000 - реактор большой мощности канальный, 1000 МВт. Каналы - как раз все эти трубы.

Спустившись вниз, попадаем в помещение за очень крутой дверью, в котором работает тепловая пушка.

К сожалению, вдоль двери лежат трубы, не позволяющие прикрыть её и оценить с обратной стороны. Но и с этого ракурса она прекрасна!

За дверью находится одно оз четырёх помещений вокруг крестовины - опоры чаши реактора

Поднявшись снова наверх, видем крышку реактора, в который сверху входят каналы ввода тепловыделяющих сборок

Здесь же находим лесенку ещё выше, которой тут же решаем воспользоваться

Поднимаясь сквозь толстую крышку защиты между реактором и реакторным залом, в щёлочку наблюдаем кирпичики свинцового настила. Достигаемая верха лесенки, отодвигаем люк...

И оказываемся в реактором зале! Вот она, наша цель!
Удивительно, но здесь горит свет. Без света фотографировать было бы сложно

Я видела чужие фотки с экскурсий в аналогичный, но действующий реакторный зал, - уверена, впечатления совсем другие:) Собственными ногами топтать эти свинцовые кирпичики - такое не забывается

Подняться выше можно несколькими способами - как по открытым лесенкам, так и за стенкой

Шахта для подъёма оборудования

Есть лифт, тоже с гермодверями, но пользоваться им не пытались:)

Мостики и переходы позволяют отснять реакторный зал с кучи ракурсов.

Всё это настолько захватывающе, что описать словами невозможно

К сожалению, не закончена сборка знаменитой разгрузочно-погрузочных машины, - агрегата, позволяющего менять отработавшие сборки без остановки реактора (основное преимущество РБМК над ВВЭР)

Зато можно заглянуть в недра бассейна для охлаждения отработавших стержней... На действующих АЭС в этом бассейне вода и знаменитое свечение:)

В общем, на этом мы закончили знакомство со станцией и отправились на выход. Благополучно вышли и довольные поехали домой.
Спасибо за просмотр:)

Эта статья, которая должна дать общее представление об устройстве и работе реактора, ставшего сегодня одним из основных для нашей атомной энергетики, служит и пояснительным текстом к рисункам, где изображен реактор РБМК-1000, и к схемам, Поясняющим работу разгрузочно-загрузочной машины (РЗМ).
Главный корпус АЭС с реактором РБМК состоит из двух энергетических блоков электрической мощностью по 1000 МВт, с общим турбогенераторным залом и раздельными помещениями для реакторов. Энергетический блок - это реактор с контуром циркуляции теплоносителя и вспомогательными системами, система трубопроводов и оборудования, по которым вода из конденсаторов турбин направляется в контур циркуляции теплоносителя, и два турбогенератора мощностью по 500 МВт каждый.
Теплоноситель-вода, циркулирует по двум параллельным системам. Каждая система включает в себя по два барабана-сепаратора, 24 опускных трубы,4 всасывающий и - напорный коллекторы, - 4 циркуляционных насоса, из которых три работают, а один находится в резерве, 22 раздаточных групповых коллектора,- а также запорную и регулирующую арматуру.
От раздаточных групповых коллекторов вода с температурой 270°С по индивидуальным трубопроводам с помощью запорно-регулирующих клапанов распределяется по технологическим каналам. Омывая тепловыделяющие элементы, она нагревается до температуры насыщения, частично испаряется, и образовавшаяся пароводяная смесь также по индивидуальным трубопроводам "от каждого канала поступает в барабаны-сепараторы. Здесь происходит разделение пароводяной смеси на пар и воду. Отсепарированная вода смешивается с питательной водой и по опускным трубам направляется к главным циркуляционным насосам. Насыщенный пар давлением 70 кгс/см2 направляется по восьми паропроводам к двум турбинам. Отработав в цилиндрах высокого давления турбин, пар поступает в промежуточные сепараторы-перегреватели, где от него отделяется влага и он перегревается до температуры 250°C. Пройдя цилиндры низкого давления, пар поступает в конденсаторы. Конденсат проходит стопроцентную очистку на фильтрах, подогревается, в пяти регенеративных подогревателях и поступает в деаэраторы. Оттуда вода при температуре 165°C насосами подается обратно в барабаны-сепараторы. Всего за час через реактор насосы прогоняют около 38 тыс. т воды. Номинальная тепловая мощность реактора составляет 3140 МВт; за час он производит 5400 т пара.
Реактор размещен в бетонной шахте квадратного сечения размером 21,6 X 21,6 м и глубиной 25,5 м. Вес реактора передается на бетон при помощи сварных металлоконструкций, которые Одновременно служат биологической защитой. Вместе с кожухом они образуют заполненную смесью гелия и азота герметичную полость - реакторное пространство, в котором расположена графитовая кладка. Газ служит для поддержания температурного режима кладки.
Верхняя и нижняя металлоконструкции реактора засыпаны защитным материалом (горная порода серпентинит) и заполнены азотом. В качестве боковой биологической защиты используются водяные баки.

Графитовая кладка представляет собой вертикально расположенный цилиндр, собранный из графитовых колонн с центральными отверстиями для технологических (парогенерирующих) каналов и каналов системы управления и защиты (на схеме они не показаны).
Так как при работе реактора в графитовом замедлителе выделяется примерно 5% тепловой энергии, то для поддержания необходимого температурного режима графитовых блоков и улучшения отвода тепла от графита к теплоносителю, протекающему в каналах, была предложена оригинальная конструкция колец твердого контакта. Разрезные кольца (высотой 20 мм) размещаются по высоте канала вплотную друг к другу таким образом, что каждое соседнее кольцо имеет надежный контакт по цилиндрической поверхности либо с трубой канала, либо с внутренней поверхностью графитового блока кладки, а также по торцам с двумя другими кольцами. Эффективность предложенной конструкции была проверена экспериментами на тепловом стенде. Опыт эксплуатации энергоблоков Ленинградской АЭС подтвердил возможность и простоту установки канала с графитовыми кольцами в технологический тракт и извлечение из него.
Технологический канал - это сварная трубная конструкция, предназначенная для установки в ней тепловыделяющих сборок (ТВС) и организации потока теплоносителя.
Верхняя и нижняя части канала сделаны из нержавеющей стали, а центральная труба диаметром 88 мм и толщиной стенки 4 мм в пределах активной зоны, высота которой 7 м, изготовлена из сплава циркония с ниобием (2,5%). Этот сплав меньше, чем сталь, поглощает нейтроны, имеет высокие механические и коррозионные свойства. Создание надежного герметичного соединения центральной циркониевой части канала со стальными трубами оказалось сложной задачей, так как коэффициенты линейного расширения соединяемых материалов различаются примерно в три раза. Решить ее удалось с помощью переходников сталь-цирконий, выполненных методом диффузионной сварки.
В технологическом канале (таких каналов 1693) размещают кассету с двумя тепловыделяющими сборками; каждая такая сборка состоит из 18 твэлов. Тепловыделяющий элемент представляет собой трубку из циркониевого сплава наружным диаметром 13,6 мм, толщиной стенки 0,9 мм с двумя концевыми заглушками, внутри которой помещены таблетки из двуокиси урана. Всего в реактор загружается около 190 т урана, содержащего 1,8% изотопа урана-235.

Реактор размещен в бетонной шахте квадратного сечения размером 21,6´21,6´25,5 м. На рисунках 1.3 и 1.4 показаны металлоконструкции реактора РБМК-1000, которые расположены в бетонной шахте.

По обе стороны ЦЗ симметрично вертикальной плоскости, проходящей через центр реактора и направленной в сторону БВ, расположены помещения основного оборудования: петель ГЦН, БС, шахты опускных трубопроводов, помещения коллекторов ГЦН.

Над сепараторами размещены паровые коллекторы. Под плитным настилом расположены коммуникации трубопроводов ПВК.

Трубопроводы НВК размещены в помещениях РГК и под схемой «ОР».

Передача усилий от веса внутренних узлов, сборок и коммуникаций реактора на бетон, а также герметизация внутренней полости реактора осуществляется с помощью сварных МК, одновременно выполняющих роль биологической защиты . К металлоконструкциям относятся следующие конструктивные элементы: Схемы «С», «ОР», «КЖ», «Л» и «Д», «Е», «Г», плитный настил, «Э». Все перечисленные схемы представлены на продольном разрезе реактора (см. на рис. 1.4).

Металлоконструкция схемы «С»

Металлоконструкция схемы «С» (см. рис. 1.5) является основной опорной металлоконструкцией для схемы «ОР». Выполнена в виде креста из двух плит высотой 5,3 м, усиленных вертикальными ребрами жесткости. Передает вес от нижней металлоконструкции схемы «ОР», графитовой кладки и НВК на закладные части крестообразной фундаментной плиты из жаропрочного железобетона на отметке +11,21 м.

Две отдельно стоящие стойки служат опорами боковой биологической защиты.

Рис. 1.3. Реактор РБМК-1000

Рис. 1.4. Продольный разрез реактора РБМК-1000

Рис. 1.5. Металлоконструкция схемы «С»

Схема «С» собирается с помощью фланцевых болтовых соединений из балок-стоек высотой 5 м, расположенных по двум взаимно перпендикулярным плоскостям в виде креста.

Верхняя часть схемы «С» имеет выступы и подогнана по поверхности контакта с нижней плитой схемы «ОР».

Все детали изготовлены из стали 10ХСНД, поверхности металлизированы алюминием (0,15¸0,25 мм.) и окрашиваются органосиликатным покрытием.

Окружающая среда – воздух с относительной влажностью до 80%, и температурой до 270°С.

Металлоконструкция схемы «ОР»

Металлоконструкция схемы «ОР» (см. рис. 1.6) выполнена в виде барабана диаметром 14,5 м и высотой 2 м, собрана из трубных плит и обечайки. Служит опорой для графитовой кладки, схемы «КЖ» и коммуникаций низа реактора, является нижней биологической защитой реактора. Ребра жесткости образующие центральный крест совпадают с аналогичными ребрами МК схемы «С».



Рис. 1.6. Металлоконструкция схемы «ОР»

Металлоконструкция схемы «ОР» соединена с корпусом боковой биозащиты двумя (верхним и нижним) сильфонными компенсаторами, обеспечивающими компенсацию температурных расширений конструкций и герметичность N 2 -Не и N 2 полостей.

В МК схемы «ОР» расположены:

Нижние тракты технологических и специальных каналов;

Гильзы термопар МК;

Трубы подвода азотно-гелиевой смеси во внутреннюю полость реактора;

Трубы отвода ПГС из полости реактора;

Дренажные трубы с верхней плиты;

Трубы подвода и отвода N 2 из внутренней полости МК схемы "ОР".

Все детали МК схемы «ОР» изготовлены из стали 10ХСНД.

Условия работы МК:

Температура нижней плиты - до 270 °С;

Температура верхней плиты - до 350 °С с местным нагревом до 380 °С;

Окружающая среда для нижней плиты воздух с относительной влажностью до 80%, для верхней плиты – N 2 -Не смесь.

Металлоконструкции схем «Л» и «Д»

Металлоконструкции схем «Л» и «Д» являются боковой биозащитой реактора, снижают потоки излучения на бетон шахты; служат тепловым экраном; способствуют охлаждению кожуха реактора. Металлоконструкция схемы «Л» (см. рис. 1.7) является также опорной конструкцией для схемы «Е».

Рис. 1.7. Металлоконструкция схемы «Л»

Металлоконструкции схем «Л» и «Д» имеют форму полых кольцевых резервуаров, заполненных водой и разделенных перегородками на 16 отсеков. Металлоконструкция схемы «Д» (см. рис. 1.8) является верхней частью биозащиты и опирается на металлоконструкцию схемы «Л».

Рис. 1.8. Металлоконструкции схем «Л» и «Д»

Наружный диаметр блоков схем «Л» и «Д» - 19 м.

Внутренний диаметр блоков схемы «Л» - 16,6 м.

Внутренний диаметр блоков МК схемы «Д» - 17,8 м.

Высота блоков МК схемы «Л» - 11,05 м.

Высота блоков МК схемы «Д» - 3,2 м.

Все элементы МК схемы «Л» и «Д» изготовлены из стали 10ХСНД.

В металлоконструкциях схем «Л» и «Д» размещены каналы рабочих и пусковых ионизационных камер (РИК и ПИК), а также дренажные трубы и гильзы термопар (по одной на каждый отсек) для замера температуры воды в отсеках.

Водные объемы МК связаны между собой, подвод охлаждающей воды производится в нижнюю часть блоков МК схемы «Л», а отвод - из верхней части блоков МК схемы «Д». Пространство между внутренним цилиндром МК схемы «Л» и МК схемы «КЖ» заполнено азотом. Монтажное пространство, образованное внешним цилиндром МК схем «Л» и «Д» и шахтой реактора заполнено песком, который служит дополнительной биозащитой. Нижняя часть монтажного пространства заполнена щебнем (200¸400 мм) для исключения попадания песка в отверстия дренажной трубы Ду 150.

Условия работы МК:

Температура воды в МК схем - до 60 °С, но не более 90 °С;

Окружающая среда со стороны МК схемы «КЖ» - азот с относительной влажностью не более 80%;

Окружающая среда со стороны шахты реактора - воздух с относительной влажностью не более 80%.

Металлоконструкция схемы «КЖ»

Металлоконструкция схемы «КЖ» (см. рис. 1.9) вместе с нижней плитой схемы «Е» и верхней плитой схемы «ОР» образуют вокруг кладки реактора герметичную полость - реакторное пространство, в котором удерживается N 2 -Не смесь.

Рис. 1.9. Металлоконструкция схемы «КЖ»

Конструкция схемы «КЖ» выполнена в виде цилиндрического сварного кожуха диаметром 14,5 м из листового проката ст.10ХСНД толщиной 16 мм с 4-мя кольцевыми компенсаторами из той же стали толщиной 8 мм. По наружной поверхности кожуха приварены кольцевые ребра жесткости. Для уменьшения напряжения в компенсаторах при работе реактора схема «КЖ» приварена к нижней плите схемы «Е» и верхней плите схемы «ОР» с предварительным натягом.

Условия работы МК:

Температура кожуха - до 350 °С;

Окружающая среда внутри – N 2 -Не смесь с давлением 150 мм.вод.ст., снаружи – N 2 с давлением 200¸250 мм.вод.ст.

Металлоконструкция схемы «Е»

Металлоконструкция схемы «Е» (см. рис. 1.10) служит верхней биологической защитой реактора и опорой для ТК, спец. каналов, плитного настила и трубопроводов коммуникаций верха реактора. Схема «Е» представляет собой барабан диаметром 17м, высотой 3м, и собрана из трубных плит объединенных цилиндрической обечайкой и внутренними вертикальными ребрами жесткости, верхней и нижней плит толщиной 40 мм. Материал МК - сталь 10ХСНД.

Рис. 1.10. Металлоконструкция схемы «Е»

В металлоконструкцию схемы «Е» вварены:

1. верхние части трактов технологических и специальных каналов (кроме каналов РИК и ПИК);

2. тракты телевизионных камер;

3. гильзы термопар МК;

4. трубы отвода ПГС из внутренней полости реактора;

5. трубы подвода и отвода азота.

Внутренняя полость заполнена серпентенитовой засыпкой (60% по массе) и гали (40%). МК схемы опирается с помощью 16 катковых опор на боковую биозащиту МК сх. «Л» и «Д», каждая из которых рассчитана на нагрузку 750 тонн. К МК схемы «Е» относятся также верхний и нижний горизонтальные компенсаторы, обеспечивающие температурные расширения при сохранении герметичности N 2 -Не и N 2 полостей. Герметичность внутренней полости МК схемы «Е» обеспечивается сваркой с проверкой швов на плотность.

Условия работы МК:

Температура нижней плиты до 350 °С с местным нагревом до 370 °С,

Температура верхней плиты - до 290 °С,

Окружающая среда над верхней плитой - воздух влажностью до 80%, под нижней плитой – N 2 -Не смесь.

Металлоконструкция схемы «Г»

Металлоконструкция схемы «Г» (см. рис. 1.11) представляет собой плиты и короба перекрытия на отметке 35,5 м, которые служат биологической защитой ЦЗ от ионизирующих излучений верхних коммуникаций реактора.

Нижняя часть схемы, толщиной 70 см, выполнена в виде металлических коробов из стали 10ХСНД, заполненных смесью из серпентинитовой гали (14% по массе) и стальной дроби (86%).

Верхняя часть схемы выполнена из плит углеродистой стали толщиной 10 см, облицованных со стороны ЦЗ коррозионно-стойкой листовой сталью 0Х18Н10Т толщиной 5 мм. Балки и короба схемы имеют дыхательные болты М-24 для сообщения засыпки с атмосферой и исключения образования в засыпке гремучего газа.

Рис. 1.11. Металлоконструкция схемы «Г» и плитный настил

Проемы над каналами пусковых и рабочих ионизационных камер имеют съемные плиты. В пространстве между коробами и плитами размещены кабели идущих от сервоприводов КСУЗ, ДКЭ, КД, ПИК, РИК, от термопар расположенных в кладке, опорных и защитных плитах и отсеках МК схемы «Л» и дренажные трубы схемы «Г». Наружные поверхности балок и коробов схемы металлизированы алюмосиликатным покрытием 0,15¸0,25 мм в два слоя.

Металлоконструкция схемы «Г» работает в окружающей среде с относительной влажностью до 80%. Температура балок и коробов достигает до 250 °С, стальных плит до 100 °С, облицовки до 50 °С.


© 2024
polyester.ru - Журнал для девушек и женщин