30.09.2020

Транспорт веществ в растении. Транспорт минеральных солей по растению. Транслокация органических веществ по флоэме Транспорт воды и минеральных веществ растениями


Теперь, когда мы рассмотрели функции минеральных элементов, необходимых для нормального роста растений, следует обсудить механизмы их поступления в растения и структурные элементы, по которым предстоит им двигаться. Минеральные вещества обычно поглощаются из почвы с помощью корней. Они могут поступать в небольших количествах также и через листья, поэтому внекорневое внесение некоторых микроэлементов стало стандартным сельскохозяйственным методом. Минеральные вещества почти всегда поступают в растения в форме ионов. Эти ионы сначала должны пересечь оболочку и плазмалемму, с тем, чтобы попасть в цитоплазму: затем при необходимости пройти и через мембрану, окружающую вакуоль (тонопласт) или какую-либо клеточную органеллу, для того, чтобы оказаться в том или ином внутреннем компартменте.

Изучение вопроса транспорта элементов является одним из основных в проблеме минерального питания. Это предопределяется следующими обстоятельствами. Во-первых, суть питания растений состоит в поступлении и включении в метаболизм минеральных элементов в результате обмена между организмом и средой. Во-вторых, изучение процесса транспорта элементов сопряжено с выяснением свойств и функций клеточной оболочки, мембранных образований, связи между клетками и тканями. В-третьих, выяснение вопросов, связанных с транспортом, приближает нас к целенаправленному управлению продуктивностью сельскохозяйственных растений.

Гидратированное состояние ионов. Перенос ионов через мембрану связан с определенными трудностями. Одной из трудностей является наличие гидратированной воды, которая окружает ион и значительно увеличивает его объем.

Рассмотрим одновалентные ионы, в частности катионы Li + , Na + , K + , Rb + и Cs + : самое легкое ядро у лития, а самое тяжелое у цезия. С увеличением массового числа растет также и количество электронов, которые окружают ядро и объем пространства, занимаемого электронными орбиталями. Поскольку плотность электронного облака, окружающего ядро мала, можно предположить, что ядро более доступно внешним воздействиям. Эта зависимость находит свое отражение в величинах радиусов гидратированных ионов: Li + – 0,06; Na + – 0,095; K + – 0,133; Rb + – 0,148; Cs + – 169 нм.

В водных растворах молекулы воды удерживаются около ионов электростатическими силами, источником которых служат заряженные частицы атомного ядра. Чем ближе могут подойти к заряженному атомному ядру молекулы воды, тем сильнее они связываются и тем больше изменяется величина свободной энергии, обусловленная гидратацией. Таким образом, у лития молекулы воды ближе к ядру и это значит, что в гидратной оболочке лития содержится больше молекул воды. Известно, что молекулы воды являются диполями. Около катионов все ближайшие молекулы воды ориентируются отрицательными полюсами внутрь, а около анионов внутрь направлены положительные полюсы молекул воды (рис. 5.1).


Этот внутренний, сильно связанный с ионами структурированный слой молекул воды, называют первичной оболочкой.

На некотором отдалении, превышающем толщину первичной оболочки, напряженность электрического поля несколько снижается, что приводит к изменению нормальной ориентации молекул воды. Из-за этого вокруг иона возникает вторичная оболочка (рис. 5.2).

Таким образом, благодаря гидратной оболочке размеры ионов сильно увеличиваются. Между радиусами гидратированных и негидратированных катионов щелочных металлов существует обратная зависимость, т. е. гидратированный ион, имеющий меньший кристаллический радиус, имеет большие размеры. Радиусы гидратированных ионов трудно вычислить; данные разных авторов значительно разнятся. Подвижность ионов дает представление об их относительных размерах (табл. 5.2).

Таблица 5.2

Подвижность ионов в водных растворах (25 О С)

В настоящее время общепринятыми являются представления о том, что ионы и различные вещества преодолевают мембрану несколькими способами, основные из которых:

1. Простая диффузия через липидную фазу, если вещество растворимо в липидах (это не касается ионов).

2. Облегченная диффузия гидрофильных веществ с помощью липофильных переносчиков (транспортеров).

3. Простая диффузия ионов через гидрофильные поры (например, через ионные каналы).

4. Перенос веществ с участием активных комплексов (насосов).

5. Транспорт веществ путем пиноцитоза в условиях существенных изменений архитектуры мембран.

Что касается движущих сил мембранного транспорта, то различают два механизма.

Пассивный транспорт – перемещение веществ путем диффузии по градиенту электрохимического потенциала без затраты энергии (простая и, в какой-то мере, облегченная диффузия).

Активный транспорт перемещение веществ против градиента электрохимического потенциала с затратой метаболической энергии, как правило в форме АТФ или редокс-цепей.

Для того чтобы понять механизмы трансмембранного переноса элементов минерального питания, остановимся на рассмотрении некоторых физико-химических закономерностях, определяющих движение ионов в растворе и мембране. Начнем с процессов пассивного транспорта (в частности вспомним законы диффузии).

Согласно первому закону Фика, поток (Ф) прямо пропорционален коэффициенту диффузии D и градиенту концентрации dC/dх в точке х в данный момент времени.

Транспорт ассимилятов - дальний и ближний - всегда сопряжен с затратой энергии. Вначале ассимиляты (глюкоза) из мест их образования проходят по симпласту до клеток-спутниц и окружающих ситовидные трубки паренхимных клеток . В этих клетках сначала происходит превращение глюкозы в сахарозу , которая затем в результате активного переноса "перекачивается" в ситовидные трубки. Дальний транспорт сахаров по ситовидным трубкам осуществляется в виде сахарозы . В местах потребления ассимилятов или отложения запасных веществ ассимиляты переходят из ситовидных трубок и достигают конкретного места назначения по симпластическому пути также в виде глюкозы .

Растущие органы и ткани - листья , меристемы - активно притягивают к себе ассимиляты из мест их хранения, а также из закончивших рост листьев.

Главный путь дальнего транспорта ионов - транспирационный ток по ксилеме . Для ближнего транспорта в корне используются симпласт и апопласт . Главным фильтрующим барьером на пути ионов в корне оказывается эндодерма с ее поясками Каспари . Через эндодерму ионы проникают по пропускным клеткам путем активного транспорта. Переход ионов в сосуды может быть пассивным или активным. В оси побега - стебле - ионы активно извлекаются из сосудов и транспортируются в горизонтальном направлении, в основном по сердцевинным лучам. В листе из окончаний сосудов ионы выходят пассивно вместе с транспирационным током и в течение вегетационного периода могут накапливаться в большом количестве. Часть накопленных ионов (Са и Mg) удаляется вместе с осенним листопадом, другая часть к этому времени из листьев отводится.

Основным двигателем транспирационного тока является

Движение веществ по клеткам и тканям. Внутри живых клеток и между отдельными клетками постоянно перемещаются различные вещества. Одни из них поступают в клетку, другие выводятся из нее. Например, вещества, которые образуются в растении, перемещаются внутри клетки, между соседними клетками, от одного органа к другому. Так, продукты фотосинтеза от клеток листа транспортируются к не зеленым частям растения (корню, стеблю, цветкам).

Транспорту веществ способствует строение клеточной оболочки, через которую проходят определенные вещества. Цитоплазма соседних клеток сообщается между собой тончайшими канальцами, которые густо пронизывают клеточную стенку.

Движение минеральных и органических веществ между органами, Для того чтобы понять, каким образом перемещаются вещества между органами растения, вспомните внутреннее строение и функции корня, стебля и листа.

Водный раствор минеральных веществ из почвы поглощают корневые волоски всасывающей зоны корня. Далее через клетки коры корня этот раствор поступает к сосудам центрального цилиндра.

Благодаря корневому давлению, возникающему в клетках корня, почвенный раствор солей по сосудам поступает в надземную часть растения.

Корневое давление можно измерить, присоединив к пню свежесрезанного растения манометрическую трубку (прибор, измеряющий давление). У травянистых растений корневое давление достигает 2-3 атмосфер, у деревянистых – еще больше. По сосудам вода передвигается к листьям, из которых испаряется через устьица. Это направление движения растворов называют восходящим потоком.

На восходящий поток веществ значительно влияет испарение воды листьями, создающее так называемую присасывающую силу листьев. Чем больше воды испаряют листья, тем интенсивнее корневая система поглощает ее из почвы и тем скорее почвенный раствор поступает к надземным частям.

От листьев по стеблю в направлении корневой системы, цветков или плодов транспортируются органические вещества – продукты фотосинтеза. Количество органических веществ, образованных за один световой день в хлоропласте, превышает его массу в несколько раз. Органические вещества по ситовидным трубкам оттекают от листьев к другим частям растения, где они потребляются или откладываются про запас (корень, стебель, плоды). Этот поток называют нисходящим.

Вода и растворенные в ней минеральные и органические вещества могут передвигаться в растении также и в горизонтальном направлении. В корне, например, этот транспорт осуществляется по клеткам коры, а в стебле – по клеткам сердцевинных лучей.

Зная пути и механизмы передвижения веществ по растению, можно ими управлять. Так, чтобы ускорить созревание помидоров, удаляют боковые побеги. Укорачивая побеги, появившиеся после формирования гроздей винограда, можно изменить направление потоков питательных веществ к плодам, созревание которых при этом значительно ускорится.

Удаление избыточной воды из растения. Вы уже знаете, что в ходе транспирации вода передвигается по тканям и испаряется в атмосферу. Но, рассматривая движение водных растворов по растению, необходимо вспомнить и явление, которое вы неоднократно могли наблюдать. Так, рано утром на верхушках листьев некоторых растений (например, земляники) можно заметить крупные капли воды. Но это не роса. Иногда корни поглощают из почвы больше воды, чем успевают испарять листья, особенно ночью, когда устьичные щели закрыты. Избыток воды выдавливается через специальные отверстия по краям листовых пластинок. В частности, это явление можно наблюдать у комнатных растений – монстеры, арума, а также в лабораторных условиях у проростков овса, пшеницы, кукурузы.

Выделение избытка воды в виде капель необходимо для нормального функционирования организма растения. Попав в лист с восходящим током, вода должна или испариться, или выделиться в виде капель наружу, если испарение недостаточно интенсивное.

Для осуществления процессов жизнедеятельности растениям нужна вода и растворенные в ней минеральные (неорганические) вещества. Получить их растение может в основном из увлажненной почвы. За всасывание водного раствора у растений отвечают корни. Однако не столько корни нуждаются в воде, сколько листья и другие надземные органы растения (развивающиеся почки, побеги, цветки, плоды). Поэтому у высших растениях в процессе эволюции получила развитие проводящая система, обеспечивающая транспорт веществ. Наиболее сложное строение она имеет у покрытосеменных растений.

За передвижение воды и минеральных веществ как по стеблю, так и по листьям и в корнях, отвечают сосуды . Они представляют собой мертвые клетки. Движение воды и минеральных веществ вверх обеспечивается за счет корневого давления и испарения воды листьями.

У древесных растений сосуды находятся в древесине стеблей. В этом можно убедиться, если поставить ветку в подкрашенный водный раствор. Через некоторое время на поперечном спиле можно увидеть, что окрасится только древесина. Это значит, что только по ней передвигаются вода и растворенные в ней минеральные вещества.

Передвижение по стеблю органических веществ

В зеленых листьях растений происходит фотосинтез, в процессе которого синтезируются органические вещества. Из этих веществ в дальнейшем синтезируются другие органические вещества, используемые в различных процессах жизнедеятельности и для получения энергии.

В органических веществах нуждаются не только зеленые части растения, но и другие органы и ткани. Кроме того, часть органических веществ откладывается про запас. Поэтому в растениях осуществляется передвижение не только воды и минеральных веществ, но и транспорт органических веществ. Обычно он идет в противоположную сторону от тока водного раствора.

Органические вещества у покрытосеменных растений передвигаются по ситовидным трубкам . Это живые клетки, их поперечные перегородки, которыми они соприкасаются друг с другом, похожи на сито.

У древесных растений ситовидные трубки расположены в лубе, который является часть коры, расположенной ближе к камбию (с внутренней стороны от камбия находится древесина).

Если кора стебля растения повреждается достаточно глубоко, и это препятствует оттоку органических веществ, то на стволе образуются так называемые наплывы, или наросты. В них скапливаются органические вещества. За их счет на повреждении ствола образуется раневая пробка. Далее в этом месте могут начать развиваться корни и почки.

Органические вещества у растений часто накапливаются в различных органах и тканях (корнях, стеблях, сердцевине). Весной эти вещества используются для того, чтобы у растения появились листья и новые побеги. Для этого запасенные органические вещества должны раствориться в воде и переместиться туда, где они требуются. И получается, что в это время органические вещества двигаются не по ситовидным трубкам, а по сосудам с водой и минеральными веществами.

Растения получают углерод и кислород преимущественно из воздуха, а остальные элементы из почвы. Питательные элементы - это химические элементы, которые необходимы растению и не могут быть заменены никакими другими. Питательные вещества - это соединения, в которых имеются эти элементы. Питательные элементы содержатся в почве в 4 формах: 1) прочно фиксированные и недоступные для растения (например, ионы калия и аммония в некоторых глинистых минералах, 2) труднорастворимые неорганические соли (сульфаты, фосфаты, карбонаты) и в такой форме недоступные для растения, 3) адсорбированные на поверхности коллоидов, доступные для растений благодаря ионному обмену на выделяемые растением ионы, 4) растворенные в воде и поэтому легко доступные для растений.

В поглощении минеральных веществ играют роль и клеточная стенка, и плазмалемма.

Наличие в клеточной стенке пектиновых веществ с карбоксильными группами обуславливает их свойство катионообменников (активно связывают двух- и трёхвалентные катионы и удерживают их в кажущемся свободном пространстве, непосредственно примыкающем к плазмалемме). Таким образом, благодаря контактному обмену с почвенным раствором или непосредственно с почвенным поглощающим комплексом ППК (адсорбированными на частицах почвы ионами) происходит обмен катионов водорода на катионы окружающей среды и HCO 3 - (OH -) на анионы минеральных веществ.

Перемещение же ионов через плазмалемму осуществляется либо путём диффузии (по электрическому и концентрационному градиентам) – пассивный транспорт , либоактивно – против градиента, с затратой энергии (Н + - АТРаза,Na + ,K + - АТРаза,Ca 2+ - АТРаза, анионная АТРаза).

Особую роль в плазмалемме растительных клеток играет протонный насос. Создаваемый им мембранный потенциал может быть использован на транспорт катионов по электрическому градиенту против концентрационного. И наоборот, градиент рН служит энергетической основой для переноса через мембрану анионов хлора Cl - , сульфат-анионов SO 4 2- и др. всимпорте с Н + (в ту же сторону) или для выкачки излишних катионов натрия вантипорте с Н + . Изменение рН служит основой и для вторичного активного транспорта органических веществ (с помощью белков-переносчиков).

Рис. 1 Механизмы мембранного транспорта в плазмалемме растительных клеток: К n + - катионы; А - - анионы; Сах – сахара; АК - аминокислоты

Ксилемный транспорт

Поглощённые вещества и некоторые метаболиты корня (аминокислоты) по апопластному и симпластному пути вместе с током воды поступают к сосудам ксилемы. Загрузка ксилемы осуществляется благодаря функционированию одного или двух насосов (Н + - АТРазы). Ксилемный сок, например, у люпина, имеет рН = 5,9, содержит: 0,7 – 2,6 ммоль/л аминокислот; 2,4 – 4,6 К + ; 2,2 – 2,6Na + ; 0,4 – 1,8 Са 2+ ; 0,3 – 1,1Mg 2+ .

Состав ксилемного сока зависит от вида растения и условий питания, а по мере продвижения по ксилеме изменяется количественно и качественно.

Разгрузка ксилемы обусловлена гидростатическим давлением в сосудах, силами транспирации и аттрагирующим действием окружающих клеток. В клетки листа вещества из апопласта поступают в результате активной работы Н + -помпы. Если в результате постоянного тока воды в клетках возникает перенасыщение солями, то в тканях листа либо образуются труднорастворимые осадки солей (в клеточных стенках, вакуолях, митохондриях), либо происходит их отток через флоэму, либо выделение специализированными солевыми желёзками и волосками.


© 2024
polyester.ru - Журнал для девушек и женщин