22.11.2021

Какой участок цепи называется однородным. Закон Ома для однородного, неоднородного участка цепи и замкнутой (полной) цепи. Сопротивление проводников. Дифференциальная форма закона Ома. Формулировка для полной цепи


Электрический ток - упорядоченное движение нескомпенсированного электрического заряда. Если это движение возникает в проводнике, то электрический ток называется током проводимости. Электрический ток могут вызвать кулоновские силы. Поле этих сил называют кулоновским и характеризуют напряженностью Е кул.

Движение зарядов может возникнуть и под действием неэлектрических сил, называемых сторонними (магнитные, химические). Е ст - напряженность поля этих сил.

Упорядоченное движение электрических зарядов может возникнуть и без действия внешних сил (диффузия, химические реакции в источнике тока). Для общности рассуждения и в этом случае будем вводить эффективное стороннее поле Е ст.

Полная работа по перемещению заряда на участке цепи:

Разделим обе части последнего уравнения на величину перемещаемого по данному участку заряда.

.

Разность потенциалов на участке цепи.

Напряжением на участке цепи называется величина, равная отношению суммарной работы, совершаемой при перемещении заряда на этом участке, к величине заряда. Т.е. НАПРЯЖЕНИЕ НА УЧАСТКЕ ЦЕПИ - ЭТО СУММАРНАЯ РАБОТА ПО ПЕРЕМЕЩЕНИЮ ПО УЧАСТКУ ЕДИНИЧНОГО ПОЛОЖИТЕЛЬНОГО ЗАРЯДА.

ЭДС на данном участке называется величина, равная отношению работы, совершаемой неэлектрическими источниками энергии при перемещении заряда, к величине этого заряда. ЭДС - ЭТО РАБОТА СТОРОННИХ СИЛ ПО ПЕРЕМЕЩЕНИЮ ЕДИНИЧНОГО ПОЛОЖИТЕЛЬНОГО ЗАРЯДА НА УЧАСКЕ ЦЕПИ.

Сторонние силы в электрической цепи работают, как правило, в источниках тока. Если на участке цепи имеется источник тока, то такой участок называется неоднородным.

Напряжение на неоднородном участке цепи равно сумме разности потенциалов на концах этого участка и ЭДС источников в нем. При этом ЭДС считается положительной, если направление тока совпадает с направлением действия сторонних сил, т.е. от минуса источника к плюсу.

Если на интересующем нас участке нет источников тока, то в этом и только в этом случае напряжение равно разности потенциалов.

В замкнутой цепи для каждого из участков, образующих замкнутый контур, можно написать:

Т.к. потенциалы начальной и конечной точек равны, то .

Следовательно, (2),

т.е. сумма падений напряжений в замкнутом контуре любой электрической цепи равна сумме ЭДС.

Разделим обе части уравнения (1) на длину участка.

Где - напряженность суммарного поля, - напряженность стороннего поля, - напряженность кулоновского поля.

Для однородного участка цепи .

Плотность тока , значит - закон Ома в дифференциальной форме. ПЛОТНОСТЬ ТОКА В ОДНОРОДНОМ УЧАСТКЕ ЦЕПИ ПРЯМО ПРОПОРЦИОНАЛЬНА НАПРЯЖЕННОСТИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В ПРОВОДНИКЕ.

Если на данном участке цепи действует кулоновское и стороннее поле (неоднородный участок цепи), то плотность тока будет пропорциональна суммарной напряженности поля:

. Значит, .

Закон Ома для неоднородного участка цепи: СИЛА ТОКА В НЕОДНОРОДНОМ УЧАСТКЕ ЦЕПИ ПРЯМО ПРОПОРЦИОНАЛЬНА НАПРЯЖЕНИЮ НА ЭТОМ УЧАСТКЕ И ОБРАТНО ПРОПОРЦИОНАЛЬНА ЕГО СОПРОТИВЛЕНИЮ.

Если направление Е c т и Е кул совпадают, то ЭДС и разность потенциалов имеют одинаковый знак.

В замкнутой цепи V=О, т.к. кулоновское поле консервативно.

Отсюда: ,

где R - сопротивление внешней части цепи, r - сопротивление внутренней части цепи (т.е. источников тока).

Закон Ома для замкнутой цепи: СИЛА ТОКА В ЗАМКНУТОЙ ЦЕПИ ПРЯМО ПРОПОРЦИОНАЛЬНА ЭДС ИСТОЧНИКОВ И ОБРАТНО ПРОПОРЦИОНАЛЬНА ПОЛНОМУ СОПРОТИВЛЕНИЮ ЦЕПИ.

ПРАВИЛА КИРХГОФА.

Для рассчета разветвленных электрических цепей применяют правила Кирхгофа.

Точка цепи, в которой пересекаются три и более проводников называется узлом. По закону сохранения заряда cумма токов, приходящих в узел и выходящих из него равна нулю. . (Первое правило Кирхгофа). АЛГЕБРАИЧЕСКАЯ СУММА ТОКОВ, ПРОХОДЯЩИХ ЧЕРЕЗ УЗЕЛ РАВНА НУЛЮ.

Ток, входящий в узел, считается положительным, выходящий из узла - отрицательным. Направления токов в участках цепи можно выбирать произвольно.

Из уравнения (2) следует, что ПРИ ОБХОДЕ ЛЮБОГО ЗАМКНУТОГО КОНТУРА АЛГЕБРАИЧЕСКАЯ СУММА ПАДЕНИЙ НАПРЯЖЕНИЙ РАВНА АЛГЕБРАИЧЕСКОЙ СУММЕ ЭДС В ЭТОМ КОНТУРЕ , - (второе правило Кирхгофа).

Направление обхода контура выбирается произвольно. Напряжение на участке цепи считается положительным, если направление тока на этом участке совпадает с направлением обхода контура. ЭДС считается положительной, если при обходе по контуру источник проходится от отрицательного полюса к положительному.

Если цепь содержит m узлов, то можно составить m-1 уравнение по первому правилу. Каждое новое уравнение должно включать в себя хотя бы один новый элемент. Полное число уравнений, составленных по правилам Кирхгофа, должно совпадать с числом участков между узлами,т.е. с числом токов.

Наиболее применяемое в электротехнике соотношение между основными электрическими величинами – закон Ома, установленный немецким физиком Георгом Омом, эмпирическим способом, в 1826 г. С его помощью устанавливается связь между напряжением (электродвижущей силой), сопротивлением элементов этой цепи, силой проходящего тока.

Электрические параметры, которые описываются законом Ома:

  • Сила тока определяется количеством заряда, проходящего по проводнику за некоторое время, обозначается буквой I, единица измерения – ампер (А). Входит в основные единицы международной системы Си;
  • Электрическое напряжение, единица измерения – вольт, понятие ввёл тот же Георг Ом. Вольт может быть выражен через работу по перемещению заряда, выделяемую мощность при токе 1 ампер, имеет эталонные источники в виде высокостабильных гальванических элементов. Часто указывается как разность потенциалов, в некоторых случаях применяется понятие электродвижущая сила (ЭДС). Для обозначения могут использоваться буквы U, V;
  • R – сопротивление (электрическое), указывает на свойства проводника, оказывающие препятствия прохождению тока. Значительно зависит от материала проводника и температуры. Единица измерения – 1 ом, обозначение Ом или Ω.

Классическая формулировка закона Ома: сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Это выражение справедливо для электрической цепи, которая не содержит дополнительной электродвижущей силы, обеспечивающей электрический ток, цепи, определяемой как однородная. В большинстве случаев применяется именно такая формула. На практике часто требуется вычислить значение тока, протекающего через некоторый элемент с известным сопротивлением, для этого достаточно измерить падение напряжения (разность потенциалов) на выводах этого устройства, например, резистора. При заданных любых двух значениях можно рассчитать неизвестное, так же, кроме величин, входящих в выражение, определяется электрическая мощность.

Важно! При расчётах используются величины только одной размерности – целые значения вольт, ампер, ом или соответствующие им кратные и дольные единицы.

Неоднородная цепь

Закон Ома для отдельного участка цепи не учитывает присутствие источника питания, его свойства не входят в вычисления. Для цепи, называемой неоднородной, содержащей ЭДС любого рода и её источник, в известную формулу следует добавить внутреннее сопротивление самого питающего устройства:

Здесь Е – ЭДС источника напряжения, r – его внутреннее сопротивление. Варианты наименований – закон Ома для неоднородного участка цепи, для полной или замкнутой цепи. Выражение мало отличается от приведённого выше – вместо напряжения присутствует ЭДС и сопротивление источника питания.

Следует отметить, что понятие внутреннего сопротивления имеет смысл исключительно для химических источников тока, в случае применения других устройств, таких как любого вида блоков питания без батарей, говорят о выходном сопротивлении и нагрузочной способности этого блока.

В практических применениях закон Ома для неоднородного участка цепи в таком виде применяется редко, в основном для измерения самого внутреннего сопротивления аккумулятора, других элементов питания.

Закон применим и для переменного напряжения, если сопротивлением является активная нагрузка. С его помощью определяются действующие (среднеквадратичные) параметры цепи. В случае индуктивной, ёмкостной или комплексной нагрузки и для разных частот сопротивление является реактивным, значительно отличающимся от измеренного обычным методом – омметром.

Закон Ома получен практическим путём, поэтому не может быть фундаментальным, но точно описывает взаимосвязь между наиболее часто используемыми электрическими величинами.

Видео

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U - напряжение на участке, R - сопротивление участка.

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где φ 1 - φ 2 + ε = U напряжение на заданном участке цепи, R - электрическое сопротивление заданного участка цепи.

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R - электрическое сопротивление внешнего участка цепи, r - электрическое сопротивление внутреннего участка цепи.

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением R<< r, то тогда только ЭДС источника тока и его сопротивление будут определять значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания.

Электрическое сопротивление (R) - это физическая величина, численно равная отношению
напряжения на концах проводника к силе тока, проходящего через проводник.
Величину сопротивления для участка цепи можно определить из формулы закона Ома для участка цепи.

Однако, сопротивление проводника не зависит от силы тока в цепи и напряжения, а определяетсятолько формой, размерами и материалом проводника.

где l - длина проводника (м), S - площадь поперечного сечения (кв.м),
r (ро) - удельное сопротивление (Ом м).

Удельное сопротивление

Показывает, чему равно сопротивление проводника, выполненного из данного вещества,
длиной в 1м и с поперечным сечением 1 м кв.

Единица измерения удельного сопротивления в системе СИ: 1 Ом м

Однако, на практике толщина проводов значительно меньше 1 м кв,
поэтому чаще используют внесистемную единицу измерения удельного сопротивления:

Единица измерения сопротивления в системе в СИ:

Сопротивление проводника равно 1 Ом, если при разности потенциалов на его концах в 1 В,
по нему протекает ток силой 1 А.

Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристалической решетки проводника. Из-за различия в строении криталической решетки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга.

N39

Последовательное и параллельное соединения в электротехнике - два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

При последовательном соединении проводников сила тока в любых частях цепи одна и та же:

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

N40

Электродвижущая сила (ЭДС) - скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил (). В замкнутом контуре () тогда ЭДС будет равна:

, где - элемент длины контура.

ЭДС так же, как и напряжение, измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого источника равна нулю.

[править]ЭДС индукции

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где - поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре

n41

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Зная две формулы:
I = q/t ..... и..... U = A/q
можно вывести формулу для расчета работы электрического тока:

Работа электрического тока равна произведению силы тока на напряжение
и на время протекания тока в цепи.

Единица измерения работы электрического тока в системе СИ:
[ A ] = 1 Дж = 1A. B . c

Мощность электрического тока показывает работу тока, совершенную в единицу времени
и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

(мощность в механике принято обозначать буквой N , в электротехнике - буквой Р )
так как А = IUt , то мощность электрического тока равна:

Единица мощности электрического тока в системе СИ:

[ P ] = 1 Вт (ватт) = 1 А. B

N42

Полупроводни́к - материал, который по своей удельной проводимости занимает промежуточное место междупроводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам , а арсенид индия - к узкозонным . К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира - полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называютдонорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуляполупроводники имеют свойства диэлектриков.

N43

Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. В Европе он появился приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле .

Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда. Эти опыты показали, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся ее повернуть. В том же году французский физик А. Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов.

По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

Источниками магнитного поля являются движущиеся электрические заряды (токи). Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемыемагнитные заряды двух знаков (например, северный N и южный S полюса магнитной стрелки). Однако опыт показывает, что изолированных магнитных зарядов не существует.

Магнитное поле токов принципиально отличается от электрического поля. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции который определяет силы, действующие на токи или движущиеся заряды в магнитном поле.

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно ориентирующийся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора Такое исследование позволяет наглядно представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции , в каждой точке которых вектор направлен по касательной.

N44

Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поледействует на малый отрезок проводника с током. Выражение для силы , с которой магнитное поле действует на элемент объёма проводника с током плотности , находящегося в магнитном поле с индукцией , в Международной системе единиц (СИ) имеет вид:

.

Если ток течёт по тонкому проводнику, то , где - «элемент длины» проводника - вектор, по модулю равный и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:

Направление силы определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки.

Модуль силы Ампера можно найти по формуле:

где - угол между векторами магнитной индукции и тока.

Сила максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции ():

N45

Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним подвижной перемычкой длиной l (рис. 2.17). Этот контур находится во внешнем однородном магнитном поле , перпендикулярном к плоскости контура. При показанном на рисунке направлении тока I , вектор сонаправлен с .

На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо:

Пусть проводник l переместится параллельно самому себе на расстояние dx . При этом совершится работа:

, (2.9.1)

Работа , совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток , пересечённый этим проводником.

Формула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции.

Сила Лоренца

Сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.

где q - заряд частицы;
V - скорость заряда;
B - индукции магнитного поля;
a - угол между вектором скорости заряда и вектором магнитной индукции.

Направление силы Лоренца определяется по правилу левой руки:

Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца

.

Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т.е. не изменяет величину скорости заряда и его кинетическую энергию).

Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0 , и заряд в магнитном поле движется равномерно и прямолинейно.

Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной

и создает центростремительное ускорение равное

В этом случае частица движется по окружности.


.

Согласно второму закону Ньютона: сила Лоренца равнв произведению массы частицы на центростремительное ускорение

тогда радиус окружности

а период обращения заряда в магнитном поле

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА

Магнитные свойства вещества объясняются согласно гипотезе Ампера циркулирующими внутри любого вещества замкнутыми токами:

Внутри атомов, вследствие движения электронов по орбитам, существуют элементарные электрические токи, которые создают элементарные магнитные поля.
Поэтому:
1. если вещество не обладает магнитными свойствами - элементарные магнитные поля несориентированы (из-за теплового движения);

2. если вещество обладает магнитными свойствами - элементарные магнитные поля одинаково направлены (сориентированы) и образуется собственное внутреннее магнитное поле вещества.

Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа [источник не указан 253 дня ] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Согласно закону электромагнитной индукции Фарадея при изменении магнитного потока , пронизывающего электрический контур, в нём возбуждается ток, называемый индукционным. Величина электродвижущей силы, ответственной за этот ток, определяется уравнением :

где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.

N48

До сих пор мы рассматривали изменяющиеся магнитные поля, не обращая внимание на то, что является их источником. На практике чаще всего магнитные поля создаются с помощью различного рода соленоидов, т.е. многовитковых контуров с током.

Здесь возможны два случая: при изменении тока в контуре изменяется магнитный поток, пронизывающий: а) этот же контур; б) соседний контур.

ЭДС индукции, возникающая в самом же контуре, называется ЭДС самоиндукции , а само явление – самоиндукция.

Если же ЭДС индукции возникает в соседнем контуре, то говорят о явлении взаимной индукции .

Ясно, что природа явления одна и та же, а разные названия использованы для того, чтобы подчеркнуть место возникновения ЭДС индукции.

Явление самоиндукции открыл американский ученый Дж. Генри.

Согласно закону электромагнитной индукции

Но ΔФ=LΔI , следовательно:

N49

лектродвигатель – это просто устройство для эффективного преобразования электрической энергии в механическую.

В основе этого преобразования лежит магнетизм. В электродвигателях используются постоянные магниты и электромагниты, кроме того, используются магнитные свойства различных материалов, чтобы создавать эти удивительные устройства.

Существует несколько типов электродвигателей. Отметим два главных класса: AC и DC.

Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).

Электродвигатели класса DC (Direct Current) требуют для работы источник постоянного тока или напряжения (такой источник Вы можете найти в любой батарейке).

Универсальные двигатели могут работать от источника любого типа.

Не только конструкция двигателей различна, различны способы контроля скорости и вращающего момента, хотя принцип преобразования энергии одинаков для всех типов.

.

Проводники, подчиняющиеся закону Ома, называются линейными.

Графическая зависимость силы тока от напряжения (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

1.5. Последовательное и параллельное соединение проводников

Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно.

При последовательном соединении проводников конец первого проводника соединяется с началом второго и т. д. При этом сила тока одинакова во всех проводниках , а напряжение на концах всей цепи равно сумме напряжений на всех последовательно включенных проводниках. Например, для трех последовательно включенных проводников 1, 2, 3 (рис. 4) с электрическими сопротивлениями , и получим:

Рис. 4.

.

По закону Ома для участка цепи:

U 1 = IR 1 , U 2 = IR 2 , U 3 = IR 3 и U = IR (1)

где – полное сопротивление участка цепи из последовательно включенных проводников. Из выражения и (1) будем иметь . Таким образом,

R = R 1 + R 2 + R 3 . (2)

При последовательном соединении проводников их общее электрическое сопротивление равно сумме электрических сопротивлений всех проводников.

Из соотношений (1) следует, что напряжения на последовательно включенных проводниках прямо пропорциональны их сопротивлениям:

Рис. 5.

При параллельном соединении проводников 1, 2, 3 (рис. 5) их начала и концы имеют общие точки подключения к источнику тока.

При этом напряжение на всех проводниках одинаково , а сила тока в неразветвленной цепи равна сумме сил токов во всех параллельно включенных проводниках . Для трех параллельно включенных проводников сопротивлениями , и на основании закона Ома для участка цепи запишем

Обозначив общее сопротивление участка электрической цепи из трех параллельно включенных проводников через , для силы тока в неразветвленной цепи получим

, (5)

то из выражений (3), (4) и (5) следует, что:

. (6)

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям всех параллельно включенных проводников.

Параллельный способ включения широко применяется для подключения ламп электрического освещения и бытовых электроприборов к электрической сети.

1.6. Измерение сопротивления

В чем заключаются особенности измерения сопротивлений?

При измерении малых сопротивлений на результат измерения влияют сопротивления соединительных проводов, контактов и контактные термо – эдс. При измерении больших сопротивлений необходимо считаться с объемным и поверхностным сопротивлениями и учитывать или устранять влияние температуры, влажности и других причин. Измерение сопротивлений жидких проводников или проводников, обладающих высокой влажностью (сопротивлений заземления), производится на переменном токе, так как применение постоянного тока связано с погрешностями, вызванными явлением электролиза.

Измерение сопротивлений твердых проводников производится на постоянном токе. Так как при этом, с одной стороны, исключаются погрешности, связанные с влиянием емкости и индуктивности объекта измерения и измерительной цепи, с другой стороны, появляется возможность применять приборы магнитоэлектрической системы, имеющие высокую чувствительность и точность. Поэтому мегомметры выпускаются на постоянном токе.

1.7. Правила Кирхгофа

Правила Кирхгофа соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи .

Правила Кирхгофа не выражают никаких новых свойств стационарного электрического поля в проводниках с током по сравнению с законом Ома. Первое из них является следствием закона сохранения электрических зарядов, второе – следствием закона Ома для неоднородного участка цепи. Однако их использование значительно упрощает расчет токов в разветвленных цепях.

Первое правило Кирхгофа

В разветвленных цепях можно выделить узловые точки(узлы), в которых сходятся не менее трех проводников (рис. 6). Токи, втекающие в узел, принято считать положительными ; вытекающие из узла – отрицательными .

В узлах цепи постоянного тока не может происходить накопление зарядов. Отсюда следует первое правило Кирхгофа:

алгебраическая сумма сил токов, сходящихся в узле, равна нулю:

Или в общем виде:

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.

Второе правило Кирхгофа


В разветвленной цепи всегда можно выделить некоторое количество замкнутых путей, состоящих из однородных и неоднородных участков. Такие замкнутые пути называются контурами. На разных участках выделенного контура могут протекать различные токи. На рис. 7 представлен простой пример разветвленной цепи. Цепь содержит два узла a и d, в которых сходятся одинаковые токи; поэтому только один из узлов является независимым (a или d).

Цепь содержит один независимый узел (a или d) и два независимых контура (например, abcd и adef)

В цепи можно выделить три контура abcd, adef и abcdef. Из них только два являются независимыми (например, abcd и adef), так как третий не содержит никаких новых участков.

Второе правило Кирхгофа является следствием обобщенного закона Ома.


Запишем обобщенный закон Ома для участков, составляющих один из контуров цепи, изображенной на рис. 8, например, abcd. Для этого на каждом участке нужно задать положительное направление тока иположительное направление обхода контура . При записи обобщенного закона Ома для каждого из участков необходимо соблюдать определенные «правила знаков», которые поясняются на рис. 8.

Для участков контура abcd обобщенный закон Ома записывается в виде:

для участкаbc:

для участка da:

Складывая левые и правые части этих равенств и принимая во внимание, что , получим:

Аналогично, для контура adef можно записать:

Согласно второму правилу Кирхгофа:

в любом простом замкнутом контуре, произвольно выбираемом в разветвленной электрической цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков равна алгебраической сумме ЭДС, имеющихся в контуре:

,

где – число источников в контуре, – число сопротивлений в нем.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура.

Если направления токов совпадают с выбранным направлением обхода контура, то силы токов считаются положительными. ЭДС считаются положительными, если они создают токи, сонаправленные с направлением обхода контура.

Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Порядок расчёта разветвлённых цепей постоянного тока

Расчет разветвленной электрической цепи постоянного тока выполняется в следующем порядке:

· произвольно выбирают направление токов во всех участках цепи;

· записывают независимых уравнений, согласно первому правилу Кирхгофа, где – количество узлов в цепи;

· выбирают произвольно замкнутые контуры так, чтобы каждый новый контур содержал хотя бы один участок цепи, не входящий в ранее выбранные контуры. Записывают для них второе правило Кирхгофа.

В разветвленной цепи, содержащей узлов и участков цепи между соседними узлами, число независимых уравнений, соответствующих правилу контуров, составляет .

На основе правил Кирхгофа составляют систему уравнений, решение которой позволяет найти силы токов в ветвях цепи.

Пример 1:

Первое и второе правила Кирхгофа, записанные для всех независимых узлов и контуров разветвленной цепи, дают в совокупности необходимое и достаточное число алгебраических уравнений для расчета значений напряжений и сил токов в электрической цепи. Для цепи, изображенной на рис.7, система уравнений для определения трех неизвестных токов , и имеет вид:

,

,

.

Таким образом, правила Кирхгофа сводят расчет разветвленной электрической цепи к решению системы линейных алгебраических уравнений. Это решение не вызывает принципиальных затруднений, однако, бывает весьма громоздким даже в случае достаточно простых цепей. Если в результате решения сила тока на каком-то участке оказывается отрицательной, то это означает, что ток на этом участке идет в направлении, противоположном выбранному положительному направлению.

Вся прикладная электротехника базируется на одном догмате – это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам. Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.

Классическая формулировка

Этот простой вариант трактовки, известный нам со школы.


Формула в интегральной форме будет иметь следующий вид:


То есть, поднимая напряжение, мы тем самым увеличиваем ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I». Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

Принятые единицы измерения

Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:

  • напряжение – в вольтах;
  • ток в амперах
  • сопротивление в омах.

Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.

Формулировка для полной цепи

Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.


Учитывая «r» ЭДС, формула предстанет в следующем виде:


Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.

Напряжение будет меньше ЭДС, определить его можно по формуле:


Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

Неоднородный участок цепи постоянного тока

Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.


Формула для такого участка (обобщенный закон) будет иметь следующий вид:


Переменный ток

Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:

Где «Z» представляет собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

Практическое использование

Видео: Закон Ома для участка цепи – практика расчета цепей.

Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.


Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

  • R=0,2 МОм;
  • U=400 В.

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

  • R=20 кОм;
  • I=10 мА.

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление.

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров.

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом


Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется – линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Вывод

Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.


© 2024
polyester.ru - Журнал для девушек и женщин