31.03.2024

Удивительно красивые и необычные звезды в космосе. «Космос. Звезды. Вселенная» план-конспект занятия по окружающему миру (старшая группа) на тему Вселенная космос планеты звезды


Сравнительное однообразие химического состава известных небесных тел, быть может, разочарует кого-нибудь. Однако несомненно большое значение этого факта, подтверждающего материальное единства Космоса. Это единство дает нам право распространять на звездную Вселенную законы природы, познанные нами на опыте в скромных пределах нашей Земли. Все это - одно из ярких подтверждений правильности диалектико-материалистического мировоззрения.

3. Лот в безднах мироздания

За пределами солнечной системы к звездам приходится сделать такой большой скачок в расстояниях, что он удался всего лишь столетие назад, гораздо позднее, чем исчезли сомнения в подобии между Солнцем и звездами. Измеритель морских глубин,- лот, в области астрономии неоднократно «забрасывался» в направлении разных звезд и долго не мог достигнуть ни одной из них, не мог достать «дна». Это, конечно, лишь фигуральное сравнение, потому что, как и в случае определения температур светил, возможность непосредственных измерений расстояний здесь исключена. Как мы сейчас увидим, их можно найти лишь косвенным путем, вычисляя на основании измерения других величин. Этот путь, указанный еще Коперником, состоит в измерении углов, но приборы и методы, позволяющие достигнуть необходимой точности, были созданы лишь во второй половине XIX века.

Как и при определении расстояния до любого недоступного предмета, идея способа заключается в измерении разности направлений, по которым видна звезда с двух концов базиса известной длины. Расстояние, соответствующее этой разности направлений, можно вычислить с помощью тригонометрии. В данном случае диаметр Земли в качестве базиса оказался слишком мал, и для огромного большинства звезд при современной точности измерения углов даже диаметр земной орбиты недостаточен. Все же именно его Коперник рекомендовал взять за базис, что и выполнили ученые позднейших поколений.

Только столетие назад замечательному астроному В. Я. Струве в России, Бесселю в Германии и Гендерсону в Южной Африке удалось произвести достаточно точные измерения и впервые установить расстояния до некоторых звезд. Чувство, испытанное при этом современниками, напоминало радость моряков, которые при долгом плавании безуспешно бросали лот и, наконец, достали им до дна.

Классический способ определения расстояний до звезд состоит в точном определении направления на них (т.е. в определении их координат на небесной сфере) с двух концов диаметра земной орбиты. Для этого надо их определить в моменты, отделенные друг от друга полугодом, так как Земля за это время сама переносит с собой наблюдателя с одной стороны своей орбиты на другую.

Кажущееся смещение звезды, вызванное изменением положения наблюдателя в пространстве, чрезвычайно мало, едва уловимо. Его предпочитают измерять по фотографии, делая для этого, например, на одной и той же пластинке два снимка избранной звезды и ее соседок, один снимок через полгода после другого. Большинство звезд так далеки, что их смещение на небе при этом совершенно незаметно, но по отношению к ним достаточно близкая звезда заметно смещается. Это ее смещение и измеряют с точностью до 0",01- большей точности пока достигнуть еще не удается, но она уже намного выше точности, достигнутой полвека назад.

Описанное кажущееся смещение звезды вдвое больше того угла, под которым с нее был бы виден радиус земной орбиты и который называется годичным параллаксом.

Рис. 1. Параллакс и собственное движение звезд. На рисунке параллакс р двух близких друг к другу звезд и их собственные движения μ одинаковы, но их путь в пространстве различен.

Параллакс этих звезд наибольший и составляет 3/4"; он измерен с точностью около 1%, поскольку точность угловых измерений достигает 0",01.

Под углом около 0",01 нам представляется поперечник копейки, если ее поставить на ребро на Красной площади в Москве и рассматривать из Тулы или из Рязани! Вот какова точность астрономических измерений! Под углом в 0",01, говоря точно, видна линейка, на которую смотрят под прямым углом с расстояния, в 20 626 500 раз большего, чем длина линейки.

По параллаксу легко узнать соответствующее расстояние. Мы получим расстояние до звезды в радиусах земной орбиты, если разделим число 206 265 на величину параллакса, выраженного в секундах дуги. Чтобы выразить его в километрах, надо полученное число умножить еще на 150 000 000.

Мы уже знаем, что большие расстояния удобнее выражать в световых годах или в парсеках, а Центавра и ее соседка, прозванная «Ближайшая», так как она еще чуть-чуть ближе к нам, отстоят от нас в 270 000 раз дальше, чем Солнце, т. е. на 4 световых года. Курьерский поезд, идя без остановок со скоростью 100 км в час, добрался бы до нее через 40 миллионов лет! Попробуйте утешиться воспоминанием об этом, если вам когда-либо надоест продолжительная езда в поезде...

Точность измерения параллаксов в 0",01 не позволяет измерить параллаксы, которые сами меньше этой величины, так что описанный способ неприменим к звездам, отстоящим далее 300-350 световых лет.

С помощью описанного способа и других, использующих спектры, а также с помощью совершенно иных косвенных методов можно определять расстояния до звезд, отстоящих гораздо дальше, чем на 300 световых лет. Свет звезд некоторых далеких звездных систем доходит до нас за сотни миллионов световых лет. Это вовсе не значит, как часто думают, что мы наблюдаем звезды, может быть, уже не существующие сейчас в действительности. Не стоит говорить, что «мы видим на небе то, чего в действительности уже нет», ибо подавляющее большинство звезд изменяется так медленно, что миллионы лет назад они были такими же, как сейчас, и даже видимые места их на небе меняются крайне медленно, хотя в пространстве звезды движутся быстро.

Этот парадокс вытекает из того, что в отличие от блуждающих светил - планет звезды созвездий некогда назвали неподвижными. Между тем неподвижного в мире ничего быть не может. Еще два с половиной века назад Галлей обнаружил перемещение Сириуса по небу. Чтобы заметить систематическое изменение небесных координат звезд, их перемещение на небе относительно друг друга, надо сравнивать точные определения их положения на небе, сделанные с промежутком времени в десятки лет. Невооруженным глазом они незаметны, и за историю человечества ни одно созвездие не изменило заметно своих очертаний.

Для большинства звезд никакого перемещения подметить не удается, потому что они слишком далеки от нас. Всадник, скачущий карьером на горизонте, как нам кажется, почти стоит на месте, а черепаха, ползущая у наших ног, перемещается довольно быстро. Так и в случае звезд - мы легче замечаем движения ближайших к нам звезд. Фотографии неба, которые удобно сравнивать друг с другом, очень нам в этом помогают. Наблюдения положения звезд на небе делались задолго до изобретения фотографии, сотни и даже тысячи лет назад. К сожалению, они были слишком неточны, чтобы из сравнения их с современными можно было заметить движение звезд.

Заключение

Невооруженному глазу на первый взгляд звездное небо может показаться даже однообразным. Одинаковые сверкающие точки, в беспорядке разбросанные по темному фону, и все! Но посмотрите на звездное небо еще и еще раз. Уже через несколько сеансов пристальных наблюдений начинается первая «сортировка». Вы обнаруживаете, что звезды бывают большими - ослепительно блестящими и маленькими - чуть заметными точечками. Именно это различие видимых яркостей звезд и позволило еще в глубокой древности ввести их первую классификацию. Легенды приписывают идею Гиппарху. Будто бы он предложил назвать самые яркие точечки - звездами первой величины, а самые слабые, еле-еле заметные невооруженным глазом - звездами шестой величины. Звездные величины - это условные единицы, характеризующие видимую яркость, или, как говорят специалисты, видимый блеск, звезд. Сначала звездные величины были целыми числами и обозначались по мере убывания яркости. Но с изобретением телескопов, а потом фотоаппаратов и приборов, измеряющих мельчайшие доли освещенности, шкалу звездных величин пришлось расширить, ввести промежуточные - дробные - значения, а для особенно ярких небесных объектов - нулевые и отрицательные звездные величины. В этих относительных единицах стали измерять видимый блеск не только звезд, но и Солнца, Луны и всех планет.

Чтобы самому составить мнение о видимых звездных величинах, можно предложить простой опыт. Темной, безлунной ночью отправляйтесь куда-нибудь подальше от уличных фонарей и отыщите Ковш - часть созвездия Большой Медведицы.

Внимательно рассмотрите вторую звезду от конца ручки Ковша. Это Мицар - звезда примерно второй звездной величины. Но нас интересует не она. Рядом хорошие глаза должны разглядеть маленькую звездочку пятой величины, которая называется Алькор. Еще во времена Александра Македонского Алькор служил эталоном для проверки зрения легионеров. Новобранца выводили в поле и заставляли отыскать слабо светящийся Алькор. Нашел - хорошее зрение, годен! Не нашел - ступай домой!

Звёзды – большие небесные тела раскаленной плазмы, габариты которых могут поразить самого любознательного читателя. Готовы развиваться?

Сразу стоит отметить, что рейтинг составлен с учётом тех гигантов, о которых уже известно человечеству. Не исключено, что где-то в космическом пространстве есть звёзды ещё больших габаритов, но находится на расстоянии многих световых лет, и современного оборудования просто недостаточно для их обнаружения и анализа. Стоит также добавить, что самые больше звёзды со временем перестанут таковыми является, потому что относятся к классу переменных. Ну, и не стоит забывать о вероятных погрешностях астрологов. И так...

Топ 10 самых больших звезд во Вселенной

10

Открывает рейтинг самых крупных звезд в Галактике Бетельгейзе, размеры которой превышают радиус солнца в 1190 раз. Находится примерно в 640 световых годах от Земли. Сравнивая с другими звездами, можно сказать, что на относительно небольшом расстоянии от нашей планеты. Гигант красного цвета в ближайшие несколько сотен лет может превратиться в сверхновую. В таком случае ее габариты существенно увеличатся. По обоснованным причинам звезда Бетельгейзе, занимая последнее место в данном рейтинге является самой интересной!

RW

Удивительная звезда, привлекающая необыкновенным цветом свечения. Ее размер превышает габариты солнца от 1200 до 1600 солнечных радиусов. К при великому сожалению мы не можем сказать точно, насколько данная звезда мощная и яркая, потому что находится вдалеке от нашей планеты. Относительно истории возникновения и расстояния RW уже много лет спорят ведущие астрологи из разных стран. Все обусловлено тем, что в созвездии она регулярно видоизменяется. Со временем может исчезнуть вовсе. Но пока еще держится в топе самых больших небесных светил.

Следующей в рейтинге самых больших из известных звезд идёт KW Стрельца. Согласно древнегреческой легенда она появилась после смерти Персея и Андромеды. Это гласит о том, что обнаружить данное созвездие удалось задолго до нашего появления. Но в отличие от предков мы знаем о более достоверных данных. Известно, что размера звезды превышают Солнце в 1470 раз. При этом она находится относительно недалеко от нашей планеты. KW является яркой звездой, которая меняет свою температуру с течением времени.

В настоящее время точно известно, что размеры этой крупной звезды превышают размеры Солнца минимум в 1430 раз, но точный результат получить сложно, потому что она находится в 5 тысячах световых лет от планеты. Еще 13 лет назад американские ученные приводит совершенно другие данные. В тот период времени полагалось, что KY Лебедя имеет радиус, повышающий Солнце в 2850 раз. Теперь мы имеем более достоверные размеры относительно данного небесного тела, которые, наверняка, точнее. Исходя из названия вы поняли, что звезда располагается в созвездии Лебедя.

Очень большая звезда, включенная в созвездие Цефея – V354, размер которой превышает Солнце в 1530 раз. При этом небесное тело находится относительно недалеко от нашей планеты, всего в 9 тысячах световых лет. Особой яркостью и температурой не отличается на фоне других уникальных звезд. Однако, относится к числу переменных светил, следовательно, размеры могут меняться. Вполне вероятно, что на данной позиции в рейтинге V354 Цефея продержится недолго. Скорее всего, размеры со временем уменьшатся.

Еще несколько лет назад считалось, что данный красный гигант способен стать конкурентом для VY Большого Пса. Более того, некоторые специалисты условно считали WHO G64 самой большой звездой из известных в нашей Вселенной. Сегодня, в век стремительного развития технологий астрологам удалось получить более достоверные данные. Теперь известно, что радиус Золотой Рыбы всего лишь в 1550 раз больше Солнца. Вот, насколько огромные погрешности допустимы в области астрономии. Тем не менее, объяснить казус легко расстоянием. Звезда находится за пределами Млечного пути. А именно в карликовой галактике под названием Огромное Магелланово Облако.

V838

Одна из самых необычных звезд во Вселенной, находящаяся в созвездии Единорога. Находится примерно в 20 тысячах световых лет от нашей планеты. Удивителен даже тот факт, что нашим специалистам удалось ее обнаружить. Светило V838 даже больше, чем у Мю Цефеи. Точные расчеты относительно габаритов произвести достаточно сложно, что обусловлено огромным расстоянием от Земли. Говоря о примерных данных габарита составляют от 1170 до 1900 радиусов Солнца.

В созвездии Цефея находится много удивительных звёзд, и Мю Цефея считается тому подтверждением. Одна из самых больших звёзд превышает габарита Солнца в 1660 раз. Супергигант считается одним из наиболее ярких на территории Млечного пути. Примерно в 37 000 раз мощнее освещения наиболее известной нам звезды, то есть Солнца. К сожалению, однозначно сказать, на каком именно расстоянии от нашей планеты размещается Мю Цефея мы не можем.

На протяжении многих веков миллионы человеческих глаз с наступлением ночи устремляют свой взгляд ввех - в сторону загадочных огоньков в небе — звезд нашей Вселенной . Древние люди видели в скоплениях звёзд различные фигуры животных и людей, и каждой из них создавали свою историю. Позже подобные скопления стали называть созвездиями. На сегодняшний день астрономы выделяют 88 созвездий, разделяющих звёздное небо на определённые участки, по которым можно ориентироваться и определять местоположение звёзд. В нашей Вселенной самыми многочисленными объектами, доступными человеческому глазу, являются именно звёзды. Они представляют собой источник света и энергии для всей Солнечной системы. Они также создают тяжелые элементы, необходимые для зарождения жизни. А без звёзд Вселенной не было бы жизни, ведь Солнце дарит свою энергию практически всем живым существам на Земле. Оно согревает поверхность нашей планеты, создавая, тем самым, теплый, полный жизни оазис среди вечной мерзлоты космосы. Степень яркости звезды во Вселенной определяется её размером.

Знаете ли вы самую большую звезду во всей Вселенной?

Звезда VY Canis Majoris, находящаяся в созвездии Большого Пса является самым большим представителем звездного мира. На данный момент это самая большая звезда во Вселенной. Звезда расположена в 5 тысячах световых лет от Солнечной системы. Диаметр звезды составляет 2,9 млрд. км.

Но не все звезды во Вселенной настолько огромны. Существуют также так называемые звезды-карлики.

Сравнительные размеры звезд

Астрономы оценивают величину звёзд по шкале, согласно которой, чем ярче звезда, тем меньше её номер. Каждый последующий номер соответствует звезде, в десять раз менее яркой, чем предыдущая. Самой яркой звездой ночного неба во Вселенной является Сириус. Его видимая звёздная величина составляет -1.46, а это значит, что он в 15 раз ярче звезды с нулевой величиной. Звёзды, чья величина составляет 8 и более невозможно увидеть невооружённым взглядом. Звёзды также разделяются по цветам на спектральные классы, указывающие на их температуру. Существуют следующие классы звёзд Вселенной: O, B, A, F, G, K, и M. Классу О соответствуют самые горячие звёзды во Вселенной- голубого цвета. Самые холодные звёзды относятся к классу М, их цвет красный.

Класс Температура,K Истинный цвет Видимый цвет Основные признаки
O 30 000—60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
B 10 000—30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A 7500—10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F 6000—7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
G 5000—6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K 3500—5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
M 2000—3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.

Вопреки всеобщему заблуждению, стоит отметить, что звёзды Вселенной на самом деле не мерцают. Это лишь оптический обман - результат атмосферной интерференции. Похожий эффект можно наблюдать жарким летним днём, глядя на раскалённый асфальт или бетон. Горячий воздух поднимается, и кажется, будто вы смотрите сквозь дрожащее стекло. Тот же процесс вызывает иллюзию звёздного мерцания. Чем ближе звезда к Земле, тем больше она будет «мерцать», потому что её свет проходит через более плотные слои атмосферы.

Ядерный Очаг звезд Вселенной

Звезда во Вселенной представляет собой гигантский ядерный очаг. Ядерная реакция внутри её превращает водород в гелий, благодаря процессу синтеза, так звезда приобретает свою энергию. Атомные ядра водорода с одним протоном объединяются в атомы гелия с двумя протонами. Ядро обычного атома водорода имеет всего один протон. Два изотопа водорода также содержат один протон, но ещё имеют нейтроны. Дейтерий имеет один нейтрон, в то время, как Тритий имеет два. Глубоко внутри звезды атом дейтерия соединяется с атомом трития, образуя атом гелия и свободный нейтрон. В результате этого продолжительного процесса высвобождается огромное количество энергии.

Для звёзд главной последовательности основным источником энергии являются ядерные реакции с участием водорода: протон-протонный цикл, характерный для звезд с массой около солнечной и CNO-цикл, идущий только в массивных звёздах и только при наличии в их составе углерода. На более поздних стадиях жизни звезды могут идти ядерные реакции и с более тяжёлыми элементами вплоть до железа.

Протон-протоный цикл CNO-цикл
Основные цепочки
  • p + p → ²D + e + + ν e + 0,4 МэВ
  • ²D + p → 3 He + γ + 5,49 МэВ.
  • 3 He + 3 He → 4 He + 2p + 12,85 МэВ.
  • 12 C + 1 H → 13 N + γ +1,95 МэВ
  • 13 N → 13 C + e + + ν e +1,37 МэВ
  • 13 C + 1 H → 14 N + γ | +7,54 МэВ
  • 14 N + 1 H → 15 O + γ +7,29 МэВ
  • 15 O → 15 N + e + + ν e +2,76 МэВ
  • 15 N + 1 H → 12 C + 4 He+4,96 МэВ

Когда водородный запас звезды исчерпывается, она начинает превращать гелий в кислород и углерод. Если звезда достаточно массивна, процесс превращения будет продолжаться до тех пор, пока углерод и кислород не образуют неон, натрий, магний, серу и кремний. В итоге, эти элементы преобразуются в кальций, железо, никель, хром и медь, пока ядро не будет полностью состоять из металла. Как только это произойдёт, ядерная реакция прекратится, так как температура плавления железа слишком велика. Внутреннее гравитационное давление становится выше внешнего давления ядерной реакции и, в конце концов, звезда коллапсирует. Дальнейшее развитие событий зависит от изначальной массы звезды.

Типы звезд Вселенной

Главная последовательность - это период существования звезд Вселенной, во время которого внутри её проходит ядерная реакция, являющийся самым длинным отрезком жизни звезды. Наше Солнце сейчас находится именно в этом периоде. В это время звезда претерпевает незначительные колебания в яркости и температуре. Продолжительность такого периода зависит от массы звезды. У крупный массивных звёзд он короче, а у мелких длиннее. Очень большим звёздам внутреннего топлива хватает на несколько сотен тысяч лет, в то время, как малые звёзды, как Солнце, будут сиять миллиарды лет. Самые крупные звёзды во время главной последовательности превращаются в голубых гигантов.

Типы звезд Вселенной

Красный гигант - это крупная звезда красноватого или оранжевого цвета. Она представляет собой позднюю стадию цикла, когда запасы водорода подходят к концу и гелий начинает преобразовываться в другие элементы. Повышение внутренней температуры ядра приводит к коллапсу звезды. Внешняя поверхность звезды расширяется и остывает, благодаря чему звезда приобретает красный цвет. Красные гиганты очень велики. Их размер в сто раз больше обычных звёзд. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе изсозвездия Орион - самый яркий пример красного супергиганта.
Белый карлик - это то, что остаётся от обычной звезды, после того, как она проходит стадию красного гиганта. Когда у звезды больше не остаётся топлива, она может выделять часть своей материи в космос, образуя планетарную туманность. То, что остаётся - это мёртвое ядро. Ядерная реакция в нем не возможна. Оно сияет за счёт своей оставшейся энергии, но она рано или поздно кончается, и тогда ядро остывает, превращаясь в чёрного карлика. Белые карлики - очень плотные. По размеру они не больше Земли, но массу их можно сравнить с массой Солнца. Это невероятно горячие звёзды, их температура достигает 100,000 градусов и более.
Коричневого карлика ещё называют субзвездой. Во время своего жизненного цикла некоторые протозвёзды никогда не достигают критической массы, чтобы начать ядерные процессы. Если масса протозвезды составляет лишь 1/10 массы Солнца, её сияние будет недолгим, после чего она быстро гаснет. То, что остаётся и есть коричневый карлик. Это массивный газовый шар, слишком большой, чтобы быть планетой, и слишком, маленький, чтобы стать звездой. Он меньше Солнца, но в несколько раз больше Юпитера. Коричневые карлики не излучают ни света, ни тепла. Это лишь тёмный сгусток материи, существующий на просторах Вселенной.
Цефеида - это звезда с переменной светимостью, цикл пульсации которой колеблется от нескольких секунд до нескольких лет, в зависимости от разновидности переменной звезды. Цефеиды обычно изменяют свою светимость в начале жизни и в её завершении. Они бывают внутренними (изменяющими светимость в связи с процессами внутри звезды) и внешними, меняющими яркость вследствие внешних факторов, как, например, влияние орбиты ближайшей звезды. Это ещё называется двойной системой.
Многие звёзды во Вселенной являются частью больших звёздных систем. Двойные звёзды - это система из двух звёзд, гравитационно-связанных между собой. Они вращаются по замкнутым орбитам вокруг одного центра масс. Доказано, что половина всех звёзд нашей галактики имеют пару. Визуально парные звёзды выглядят, как две отдельные звезды. Их можно определить по смещению линий спектра (эффект Доплера). В затменно-двойных системах звёзды периодически затмевают друг друга, так как их орбиты расположены под маленьким углом к лучу зрения.

Жизненный Цикл звезд Вселенной

Звезда во Вселенной начинает свою жизнь в виде облака пыли и газа, называемого туманностью. Гравитация соседней или взрывная волна сверхновой звезды могут заставить туманность сжиматься. Элементы газового облака объединяются в плотную область, называемую протозвездой. В результате последующего сжатия протозвезда нагревается. В итоге, она достигает критической массы, и начинается ядерный процесс; постепенно звезда проходит все фазы своего существование. Первый (ядерный) этап жизни звезды - самый долгий и стабильный. Продолжительность жизни звезды зависит от её размера. Крупные звёзды расходуют своё жизненное топливо быстрее. Их жизненный цикл может длиться не более нескольких сотен тысяч лет. А вот маленькие звёзды живут многие миллиарды лет, так как тратят свою энергию медленнее.

Но, как бы то ни было, рано или поздно, звёздное топливо кончается, и тогда маленькая звезда превращается в красного гиганта, а крупная звезда - в красного супергиганта. Эта фаза продлиться до тех пор, пока топливо не израсходуется окончательно. В этот критический момент внутреннее давление ядерной реакции ослабнет и больше не сможет уравновешивать силу гравитации, и, в результате, произойдет коллапс звезды. Затем небольшие звёзды Вселенной, как правило, перевоплощаются в планетарную туманность с ярким сияющим ядром, называемым белым карликом. Со временем и он остывает, превращаясь в тёмный сгусток материи - чёрного карлика.

У больших звезд всё происходит немного иначе. Во время коллапса они высвобождают невероятное количество энергии, и мощный взрыв рождает сверхновую звезду. Если её величина составляет 1.4 величины Солнца, тогда, к сожалению, ядро не сможет поддерживать своё существование и, после очередного коллапса, сверхновая звезда станет нейтронной. Внутренняя материя звезды сожмётся до такой степени, что атомы образуют плотную оболочку, состоящую из нейтронов. Если же звёздная величина в три раза больше солнечной, то коллапс её просто уничтожит, сотрёт с лица Вселенной. Всё, что от неё останется - участок сильнейшей гравитации, прозванный чёрной дырой.

Туманность, оставшаяся после звезды Вселенной, может расширяться в течение миллионов лет. В конце концов, на неё подействует гравитация соседней или взрывная волна сверхновой звезды и всё повторится снова. Этот процесс будет происходить по всей Вселенной - бесконечный цикл жизни, смерти и возрождения. Результатом этой звёздной эволюции является образование тяжёлых элементов, необходимых для жизни. Наша солнечная система произошла из второго или третьего поколения туманности, и благодаря этому на Земле и других планетах есть тяжёлые элементы. А это значит, что в каждом из нас есть частички звёзд. Все атомы нашего тела были зарождены в атомном очаге либо в результате разрушительного взрыва сверхновой звезды
.


© 2024
polyester.ru - Журнал для девушек и женщин