23.07.2021

Тригонометрический ряд определение основные свойства. Числовые ряды повышенной сложности. Применение метода конечных разностей


Тригонометрические ряды Определение. Функция /(ж), определенная на неограниченном множестве D, называется периодической, если существует число Т Ф 0 такое, что для каждого ж.€ D выполняется условие. Наименьшее из таких чисел Т называется периодом функции f(x). Пример 1. Функция определенная на интервале является периодической, так как существует число Т = 2* ф О такое, что для всех х выполняется условие. Таким образом, функция sin х имеет период Т = 2ж. То же самое относится и к функции Пример 2. Функция определенная на множестве D чисел является периодической, так как существует число Т Ф 0, а именно, Т = такое, что для х 6 D имеем Определение. Функциональный ряд вида ао РЯДЫ ФУРЬЕ Тригонометрические ряды Ортогональность тригонометрической системы Тригонометрический ряд Фурье Достаточные условия разложимости функции в ряд Фурье называется тригонометрическим рядом, а постоянные а0, а„, Ьп (n = 1, 2,...) называются коэффициентами тригонометрического ряда (1). Частичные суммы 5п(ж) тригонометрического ряда (1) являются линейными комбинациями функций из системы функций которая называется тригонометрической системой. Так как членами этого ряда являются периодические функции с периодом 2л-, то в случае сходимости ряда (I) его сумма S(x) будет периодической функцией с периодом Т = 2тт: Определение. Разложить периодическую функцию f(x) с периодом Т = 2п в тригонометрический ряд (1) означает найти сходящийся тригонометрический ряд, сумма которого равна функции /(х). . Ортогональность тригонометрической системы Определение. Функции f(x) и д(х), непрерывные на отрезке [а, 6], называются ортогональными на этом отрезке, если выполнено условие Например, функции ортогональны на отрезке [-1,1], так как Определение. Конечная или бесконечная система функций, интегрируемых на отрезке [а, Ъ], называется ортогональной системой на отрезке [а, 6), если для любых номеров тип таких, что т Ф п, выполняется равенство Теорема 1. Тригонометрическая система ортогональна на отрезке При любом целом п Ф О имеем С помощью известных формул тригонометрии для любых натуральных m и n, m Ф n, находим: Наконец, в силу формулы для любых целых тип получаем Тригонометрический ряд Фурье Поставим себе задачей вычислить коэффициенты тригонометрического ряда (1), зная функцию Теорема 2. Пусть равенство имеет место для всех значений х, причем ряд в правой части равенства сходится равномерно на отрезке [-зг, х]. Тогда справедливы формулы Из равномерной сходимости ряда (1) вытекает непрерывность, а значит, и интегрируемость функции /(х). Поэтому равенства (2) имеют смысл. Более того, ряд (1) можно почленно интегрировать. Имеем откуда и следует первая из формул (2) для п = 0. Умножим теперь обе части равенства (1) на функцию cos mi, где т - произвольное натуральное число: Ряд (3), как и ряд (1), сходится равномерно. Поэтому его можно интегрировать почленно, Все интегралы в правой части, кроме одного, который получается при п = т, равны нулю в силу ортогональности тригонометрической системы. Поэтому откуда Аналогично, умножая обе части равенства (1) на sinmx и интегрируя от -тг до т, получим откуда Пусть дана произвольная периодическая функция f(x) периода 2*, интегрируемая на отрезке *]. Можно ли ее представить в виде суммы некоторого сходящегося тригонометрического ряда, заранее неизвестно. Однако по формулам (2) можно вычислить постоянные а„ и Ьп. Определение. Тригонометрический ряд коэффициенты oq, ап, Ь„ которого определяются через функцию f(x) по формулам РЯДЫ ФУРЬЕ Тригонометрические ряды Ортогональность тригонометрической системы Тригонометрический ряд Фурье Достаточные условия разложимости функции в ряд Фурье называется тригонометрическим рядом Фурье функции f(x), а коэффициенты а„, bnt определяемые по этим формулам, называются коэффициентами Фурье функции /(ж). Каждой интегрируемой на отрезке [-тг, -к] функции f(x) можно поставить в соответствие ее ряд Фурье т.е. тригонометрический ряд, коэффициенты которого определяются по формулам (2). Однако если от функции f(x) не требовать ничего, кроме интегрируемости на отрезке [--я*, тг], то знак соответствия в последнем соотношении, вообще говоря, нельзя заменить знаком равенства. Замечание. Часто требуется разложить в тригонометрический ряд функцию /(х), определенную только на отрезке (-*, п\ и, следовательно, не являющуюся периодической. Так как в формулах (2) для коэффициентов Фурье интегралы вычисляются по отрезку *], то для такой функции тоже можно написать тригонометрический ряд Фурье. Вместе с тем, если продолжить функцию f(x) периодически на всю ось Ох, то получим функцию F(x), периодическую с периодом 2п, совпадающую с /(х) на интервале (-ir, л): . Эту функцию F(x) называют периодически.^ продагжением функции /(х). При этом функция F(x) не имеет однозначного определения в точках х = ±п, ±3гг, ±5тг,.... Ряд Фурье для функции F(x) тождествен ряду Фурье для функции /(х). К тому же, если ряд Фурье для функции /(х) сходится к ней, то его сумма, являясь периодической функцией, дает периодическое продолжение функции /(х) с отрезка |-jt, п\ на всю ось Ох. В этом смысле говорить о ряде Фурье для функции /(х), определенной на отрезке (-я-, jt|, равносильно тому, что говорить о ряде Фурье для функции F(x), являющейся периодическим продолжением функции /(х) на всю ось Ох. Отсюда следует, что признаки сходимости рядов Фурье достаточно сформулировать для периодических функций. §4. Достаточные условия разложимости функции в ряд Фурье Приведем достаточный признак сходимости ряда Фурье, т. е. сформулируем условия на заданную функцию, при выполнении которых построенный по ней ряд Фурье сходится, и выясним, как при этом ведет себя сумма этого ряда. Важно подчеркнуть, что хотя приведенный ниже класс кусочно-монотонных функций и является достаточно широким, функции, ряд Фурье для которых сходится, им не исчерпываются. Определение. Функция f(x) называется кусочно-монотонной на отрезке [а, 6], если этот отрезок можно разбить конечным числом точек на интервалы, на каждом из которых f(x) монотонна, т.е. либо не убывает, либо не возрастает (см. рис. 1). Пример 1. Функция является кусочно-монотонной на интервале (-оо,оо), так как этот интервал можно разбить на два интервала (-сю, 0) и (0, +оо), на первом из которых она убывает (и значит, не возрастает), а на втором возрастает (и значит, не убывает). Пример 2. Функция кусочно-монотонна на отрезке [-зг, jt|, так как этот отрезок можно разбить на два интервала на первом из которых cos я возрастает от -I до +1, а на втором убывает от. Теорема 3. Функция f(x), кусочно-монотонная и ограниченная на отрезке (а, Ь], может иметь на нем только точки разрыва первого рода. Л Пусть, например, - точка разрыва функции /(ж). Тогда в силу ограниченности функции f(x) и монотонности по обе стороны отточки с существуют конечные односторонние пределы Это означает, что точка с есть точка разрыва первого рода (рис. 2). Теорема 4. Если периодическая функция /(ж) с периодом 2тг кусочно-монотонна и ограничена на отрезке [-т, т), то ее ряд Фурье сходится в каждой точке х этого отрезка, причем для суммы этого ряда выполняются равенства: ПрммерЗ. Функция /(z) периода 2jt, определяемая на интервале (-*,*) равенством (рис. 3), удовлетворяет условиям теоремы. Поэтому ее можно разложить в ряд Фурье. Находим для нее коэффициенты Фурье: Ряд Фурье для данной функции имеет вид Пример 4. Разложить функцию в ряд Фурье (рис.4) на интервале Данная функция удовлетворяет условиям теоремы. Найдем коэффициенты Фурье. Используя свойство аддитивности определенного интеграла, будем иметь РЯДЫ ФУРЬЕ Тригонометрические ряды Ортогональность тригонометрической системы Тригонометрический ряд Фурье Достаточные условия разложимости функции в ряд Фурье Следовательно, ряд Фурье имеет следующий вид: На концах отрезка (-я, ir], т. е. в точках х = -х и х = х, которые являются точками разрыва первого рода, будем иметь Замечание. Если в найденном ряде Фурье положить х = 0, то получим откуда

Условие Гёльдера. Будем говорить, что функция $f(x)$ удовлетворяет в точке $x_0$ условия Гёльдера, если существуют односторонние конечные пределы $f(x_0 \pm 0)$ и такие числа $\delta > 0$, $\alpha \in (0,1]$ и $c_0 > 0$, что для всех $t \in (0,\delta)$ выполнены неравенства: $|f(x_0+t)-f(x_0+0)|\leq c_0t^{\alpha }$, $|f(x_0-t)-f(x_0-0)|\leq c_0t^{\alpha }$.

Формула Дирихле. Преобразованной формулой Дирихле называют формулу вида:
$$S_n(x_0)= \frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0+t)+f(x_0-t))D_n(t)dt \quad (1),$$ где $D_n(t)=\frac{1}{2}+ \cos t + \ldots+ \cos nt = \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}} (2)$ — .

Используя формулы $(1)$ и $(2)$, запишем частичную сумму ряда Фурье в следующем виде:
$$S_n(x_0)= \frac{1}{\pi}\int\limits_{0}^{\pi}\frac{f(x_0+t)+f(x_0-t)}{2\sin\frac{t}{2}}\sin \left (n+\frac{1}{2} \right) t dt$$
$$\Rightarrow \lim\limits_{n \to \infty }S_n(x_0) — \frac{1}{\pi}\int\limits_{0}^{\pi}\frac{f(x_0+t)+f(x_0-t)}{2\sin\frac{t}{2}} \cdot \\ \cdot \sin \left (n+\frac{1}{2} \right)t dt = 0 \quad (3)$$

Для $f \equiv \frac{1}{2}$ формула $(3)$ принимает следующий вид: $$ \lim\limits_{n \to \infty }\frac{1}{\delta}\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}}dt=\frac{1}{2}, 0

Сходимость ряда Фурье в точке

Теорема. Пусть $f(x)$ — $2\pi$-периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция и в точке $x_0$ удовлетворяет условию Гёльдера. Тогда ряд Фурье функции $f(x)$ в точке $x_0$ сходится к числу $$\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Если в точке $x_0$ функция $f(x)$ — непрерывна, то в этой точке сумма ряда равна $f(x_0)$.

Доказательство

Так как функция $f(x)$ удовлетворяет в точке $x_0$ условию Гёльдера, то при $\alpha > 0$ и $0 < t$ $ < \delta$ выполнены неравенства (1), (2).

Запишем при заданном $\delta > 0$ равенства $(3)$ и $(4)$. Умножая равенство $(4)$ на $f(x_0+0)+f(x_0-0)$ и вычитая результат из равенства $(3)$, получаем $$ \lim\limits_{n \to \infty} (S_n(x_0) — \frac{f(x_0+0)+f(x_0-0)}{2} — \\ — \frac{1}{\pi}\int\limits_{0}^{\delta}\frac{f(x_0+t)+f(x_0-t)-f(x_0+0)-f(x_0-0)}{2\sin \frac{t}{2}} \cdot \\ \cdot \sin \left (n + \frac{1}{2} \right)t \, dt) = 0. \quad (5)$$

Из условия Гёльдера следует, что функция $$\Phi(t)= \frac{f(x_0+t)+f(x_0-t)-f(x_0+0)-f(x_0-0)}{2\sin \frac{t}{2}}.$$ абсолютно интегрируема на отрезке $$. В самом деле, применяя неравенство Гёльдера, получаем, что для функции $\Phi(t)$ справедливо следующее неравенство: $|\Phi(t)| \leq \frac{2c_0t^{\alpha }}{\frac{2}{\pi}t} = \pi c_0t^{\alpha — 1} (6)$, где $\alpha \in (0,1]$.

В силу признака сравнения для несобственных интегралов из неравенства $(6)$ следует, что $\Phi(t)$ абсолютно интергрируема на $.$

В силу леммы Римана $$\lim\limits_{n \to \infty}\int\limits_{0}^{\delta}\Phi(t)\sin \left (n + \frac{1}{2} \right)t\cdot dt = 0 .$$

Из формулы $(5)$ теперь следует, что $$\lim\limits_{n \to \infty}S_n(x_0) = \frac{f(x_0+0)+f(x_0-0)}{2} .$$

[свернуть]

Следствие 1. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ производную, то ее ряд Фурье сходится в этой точке к $f(x_0)$.

Следствие 2. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ обе односторонние производные, то ее ряд Фурье сходится в этой точке к $\frac{f(x_0+0)+f(x_0-0)}{2}.$

Следствие 3. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ удовлетворяет в точках $-\pi$ и $\pi$ условию Гёльдера, то в силу периодичности сумма ряда Фурье в точках $-\pi$ и $\pi$ равна $$\frac{f(\pi-0)+ f(-\pi+0)}{2}.$$

Признак Дини

Определение. Пусть $f(x)$ — $2\pi$-периодическая функция, Точка $x_0$ будет регулярной точкой функции $f(x)$, если

    1) существуют конечные левый и правый пределы $\lim\limits_{x \to x_0+0 }f(x)= \lim\limits_{x \to x_0-0 }f(x)= f(x_0+0)=f(x_0-0),$
    2) $f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}.$

Теорема. Пусть $f(x)$ — $2\pi$-периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция и точка $x_0 \in \mathbb{R}$ — регулярная точка функции $f(x)$. Пусть функция $f(x)$ удовлетворяет в точке $x_0$ условиям Дини: существуют несобственные интегралы $$\int\limits_{0}^{h}\frac{|f(x_0+t)-f(x_0+0)|}{t}dt, \\ \int\limits_{0}^{h}\frac{|f(x_0-t)-f(x_0-0)|}{t}dt,$$

тогда ряд Фурье функции $f(x)$ в точке $x_0$ имеет сумму $f(x_0)$, т.е. $$ \lim\limits_{n \to \infty }S_n(x_0)=f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Доказательство

Для частичной суммы $S_n(x)$ ряда Фурье имеет место интегральное представление $(1)$. И в силу равенства $\frac{2}{\pi }\int\limits_{0}^{\pi }D_n(t) \, dt=1,$
$$ f(x_0)= \frac{1}{\pi }\int\limits_{0}^{\pi }f(x_0+0)+f(x_0-0)D_n(t) \, dt$$

Тогда имеем $$S_n(x_0)-f(x_0) = \frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0+t)-f(x_0+0))D_n(t) \, dt + $$ $$+\frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0-t)-f(x_0-0))D_n(t) \, dt. \quad(7)$$

Очевидно, что теорема будет доказана, если докажем, что оба интеграла в формуле $(7)$ имеют пределы при $n \to \infty $ равные $0$. Рассмотрим первый интеграл: $$I_n(x_0)=\int\limits_{0}^{\pi}(f(x_0+t)-f(x_0+0))D_n(t)dt. $$

В точке $x_0$ выполняется условие Дини: сходится несобственный интеграл $$\int\limits_{0}^{h}\frac{|f(x_0+t)-f(x_0+0)|}{t} \, dt .$$

Поэтому для любого $\varepsilon > 0$ существует $\delta \in (0, h)$ такое, что $$\int\limits_{0}^{\delta }\frac{\left | f(x_0+t)-f(x_0+0) \right |}{t}dt

По выбранному $\varepsilon > 0$ и $\delta > 0$ интеграл $I_n(x_0)$ представим в виде $I_n(x_0)=A_n(x_0)+B_n(x_0)$, где
$$A_n(x_0)=\int\limits_{0}^{\delta }(f(x_0+t)-f(x_0+0))D_n(t)dt ,$$ $$B_n(x_0)=\int\limits_{\delta}^{\pi }(f(x_0+t)-f(x_0+0))D_n(t)dt .$$

Рассмотрим сначала $A_n(x_0)$. Используя оценку $\left | D_n(t) \right |

для всех $t \in (0, \delta)$.

Поэтому $$A_n(x_0) \leq \frac{\pi}{2} \int\limits_{0}^{\delta } \frac{|f(x_0+t)-f(x_0+0)|}{t}dt

Перейдем к оценке интеграла $B_n(x_0)$ при $n \to \infty $. Для этого введем функцию $$ \Phi (t)=\left\{\begin{matrix}
\frac{f(x_0+t)-f(x_0+0)}{2\sin \frac{t}{2}}, 0

$$B_n(x_0)=\int\limits_{-\pi}^{\pi}\Phi (t) \sin \left (n+\frac{1}{2} \right)t\,dt.$$ Получаем, что $\lim\limits_{n \to \infty }B_n(x_0)=0$, а это означает, что для выбранного ранее произвольного $\varepsilon > 0$ существует такое $N$, что для всех $n>N$ выполняется неравенство $|I_n(x_0)|\leq |A_n(x_0)| + |B_n(x_0)|

Совершенно аналогично доказывается, что и второй интеграл формулы $(7)$ имеет равный нулю предел при $n \to \infty $.

[свернуть]

Следствие Если $2\pi$ периодическая функция $f(x)$ кусочно дифференциируема на $[-\pi,\pi]$, то ее ряд Фурье в любой точке $x \in [-\pi,\pi]$ сходится к числу $$\frac{f(x_0+0)+f(x_0-0)}{2}.$$

На отрезке $[-\pi,\pi]$ найти тригонометрический ряд Фурье функции $f(x)=\left\{\begin{matrix}
1, x \in (0,\pi),\\ -1, x \in (-\pi,0),
\\ 0, x=0.
\end{matrix}\right.$

Исследовать сходимость полученного ряда.

Продолжая периодически $f(x)$ на всю вещественную ось, получим функцию $\widetilde{f}(x)$, график которой изображен на рисунке.

Так как функция $f(x)$ нечетна, то $$a_k=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\cos kx dx =0;$$

$$b_k=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\sin kx \, dx = $$ $$=\frac{2}{\pi}\int\limits_{0}^{\pi}f(x)\sin kx \, dx =$$ $$=-\frac{2}{\pi k}(1- \cos k\pi)$$

$$b_{2n}=0, b_{2n+1} = \frac{4}{\pi(2n+1)}.$$

Следовательно, $\tilde{f}(x)\sim \frac{4}{\pi}\sum_{n=0}^{\infty}\frac{\sin(2n+1)x}{2n+1}.$

Так как ${f}"(x)$ существует при $x\neq k \pi$, то $\tilde{f}(x)=\frac{4}{\pi}\sum_{n=0}^{\infty}\frac{\sin(2n+1)x}{2n+1}$, $x\neq k \pi$, $k \in \mathbb{Z}.$

В точках $x=k \pi$, $k \in \mathbb{Z}$, функция $\widetilde{f}(x)$ не определена, а сумма ряда Фурье равна нулю.

Полагая $x=\frac{\pi}{2}$, получаем равенство $1 — \frac{1}{3} + \frac{1}{5}- \ldots + \frac{(-1)^n}{2n+1}+ \ldots = \frac{\pi}{4}$.

[свернуть]


Найти ряд Фурье следующей $2\pi$-периодической и абсолютно интегрируемой на $[-\pi,\pi]$ функции:
$f(x)=-\ln |
\sin \frac{x}{2}|$, $x \neq 2k\pi$, $k \in \mathbb{Z}$, и исследовать на сходимость полученного ряда.

Так как ${f}"(x)$ существует при $ x \neq 2k \pi$, то ряд Фурье функции $f(x)$ будет сходиться во всех точках $ x \neq 2k \pi$ к значению функции. Очевидно, что $f(x)$ четная функция и поэтому ее разложение в ряд Фурье должно содержать косинусы. Найдем коэффициент $a_0$. Имеем $$\pi a_0 = -2 \int\limits_{0}^{\pi}\ln \sin \frac{x}{2}dx = $$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin \frac{x}{2}dx \,- \, 2\int\limits_{\frac{\pi}{2}}^{\pi}\ln \sin \frac{x}{2}dx =$$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin \frac{x}{2}dx \, — \, 2\int\limits_{0}^{\frac{\pi}{2}}\ln\cos \frac{x}{2}dx=$$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln (\frac{1}{2}\sin x)dx =$$ $$= \pi \ln 2 \, — \, 2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin x dx =$$ $$= \pi \ln 2 \, — \, \int\limits_{0}^{\pi}\ln \sin \frac{t}{2}dt = \pi\ln 2 + \frac{\pi a_0}{2},$$ откуда $a_0= \pi \ln 2$.

Найдем теперь $a_n$ при $n \neq 0$. Имеем $$\pi a_n = -2 \int\limits_{0}^{\pi}\cos nx \ln \sin \frac{x}{2}dx = $$ $$ = \int\limits_{0}^{\pi} \frac{\sin(n+\frac{1}{2})x+\sin (n-\frac{1}{2})x}{2n \sin\frac{x}{2}}dx=$$ $$= \frac{1}{2n} \int\limits_{-\pi}^{\pi} \begin{bmatrix}
D_n(x)+D_{n-1}(x)\\ \end{bmatrix}dx.$$

Здесь $D_n(x)$- ядро Дирихле, определяемое формулой (2) и получаем, что $\pi a_n = \frac{\pi}{n}$ и, следовательно, $a_n = \frac{1}{n}$. Таким образом, $$-\ln |
\sin \frac{x}{2}| = \ln 2 + \sum_{n=1}^{\infty } \frac{\cos nx}{n}, x \neq 2k\pi, k \in \mathbb{Z}.$$

[свернуть]


Литература
  • Лысенко З.М., конспект лекций по математическому анализу, 2015-2016 гг.
  • Тер-Крикоров А.М. и Шабунин М.И. Курс математического анализа, стр. 581-587
  • Демидович Б.П., Сборник заданий и упражнений по математическому анализу, издание 13, исправленное, Издательство ЧеРо, 1997, стр. 259-267

Лимит времени: 0

Навигация (только номера заданий)

0 из 5 заданий окончено

Информация

Тест по материалу данной темы:

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Тест загружается...

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Результаты

Правильных ответов: 0 из 5

Ваше время:

Время вышло

Вы набрали 0 из 0 баллов (0 )

Ваш результат был записан в таблицу лидеров

  1. С ответом
  2. С отметкой о просмотре

  1. Задание 1 из 5

    1 .
    Количество баллов: 1

    Если $2\pi$ -периодическая и абсолютно интегрируема на $[−\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ производную, то к чему будет сходиится ее ряд Фурье в этой точке?

  2. Задание 2 из 5

    2 .
    Количество баллов: 1

    Если выполнены все условия признака Дини, то к какому числу сходится ряд Фурье функции $f$ в точке $x_0$?

Решение Навье пригодно только для расчета пластинок, шарнирно опертых по контуру. Более общим является решение Леви . Оно позволяет выполнить расчет пластинки, шарнирно опертой по двум параллельным сторонам, с произвольными граничными условиями на каждой из двух других сторон.

В прямоугольной пластинке, изображенной на рис. 5.11, (a), шарнирно опертыми являются края, параллельные оси y . Граничные условия на этих краях имеют вид


Рис. 5.11

Очевидно, что каждый член бесконечного тригонометрического ряда

https://pandia.ru/text/78/068/images/image004_89.gif" width="99" height="49">; вторые частные производные функции прогибов

(5.45)

при x = 0 и x = a также равны нулю, поскольку содержат https://pandia.ru/text/78/068/images/image006_60.gif" width="279" height="201 src="> (5.46)

Подстановка (5.46) в (5.18) дает

Умножая обе части полученного уравнения на , интегрируя в пределах от 0 до a и помня, что

,

получаем для определения функции Ym такое линейное дифференциальное уравнение с постоянными коэффициентами

. (5.48)

Если для сокращения записи обозначить

уравнение (5.48) примет вид

. (5.50)

Общее решение неоднородного уравнения (5.50), как известно из курса дифференциальных уравнений, имеет вид

Ym (y ) = j m (y ) + Fm (y ), (5.51)

где j m (y ) – частное решение неоднородного уравнения (5.50); его вид зависит от правой части уравнения (5.50), т. е., фактически, от вида нагрузки q (x , y );

Fm (y ) = Am sh a m y + Bm ch a m y + y (Cm sh a m y + Dm ch a m y ), (5.52)

общее решение однородного уравнения

Четыре произвольные постоянные Am , В m , C m и Dm должны быть определены из четырех условий закрепления краев пластинки, параллельных оси , приложенная к пластинке постоянна q (x , y ) = q правая часть уравнения (5.50) приобретает вид

https://pandia.ru/text/78/068/images/image014_29.gif" width="324" height="55 src=">. (5.55)

Поскольку правая часть уравнения (5.55) постоянна, то постоянна и левая его часть; поэтому все производные j m (y ) равны нулю, и

, (5.56)

, (5.57)

где обозначено: .

Рассмотрим пластинку, защемленную вдоль краев, параллельных оси х (рис. 5.11, (в)).

Граничные условия по краям y = ± b /2

. (5.59)

Вследствие симметрии прогиба пластинки относительно оси О x , в общем решении (5.52) следует сохранить лишь члены, содержащие четные функции. Поскольку sha m y – функция нечетная, а сha m y – четная и, при принятом положении оси Ох , y sha m y – четно, в у cha m y – нечетно, то общий интеграл (5.51) в рассматриваемом случае можно представить так

. (5.60)

Поскольку в (5.44) не зависит от значения аргумента y , вторую пару граничных условий (5.58), (5.59) можно записать в виде:

Ym = 0, (5.61)

Y ¢ m = = 0. (5.62)

Y ¢ m = a m Bm sha m y + Cm sha m y + y Cm a m cha m y =

a m Bm sha m y + Cm (sha m y + y a m cha m y )

Из (5.60) – (5.63) следует

https://pandia.ru/text/78/068/images/image025_20.gif" width="364" height="55 src=">. (5.65)

Домножив уравнение (5.64) на , а уравнение (5..gif" width="191" height="79 src=">. (5.66)

Подстановка (5.66) в уравнение (5.64) позволяет получить Bm

https://pandia.ru/text/78/068/images/image030_13.gif" width="511" height="103">. (5.68)

При таком выражении функции Y m . , формула (5.44) для определения функции прогибов приобретает вид

(5.69)

Ряд (5.69) быстро сходится. Например, для квадратной пластинки в её центре, т. е. при x = a /2, y = 0

(5.70)

Удержав в (5.70) только один член ряда, т. е. приняв , получим величину прогиба, завышенную менее чем на 2,47%. Учтя, что p 5 = 306,02, найдем Вариация" href="/text/category/variatciya/" rel="bookmark">вариационный метод В..Ритца – базируется на сформулированном в п. 2 вариационном принципе Лагран-жа.

Рассмотрим этот метод применительно к задаче изгиба пластинок. Представим изогнутую поверхность пластинки в виде ряда

, (5.71)

где fi (x , y ) непрерывные координатные функции, каждая из которых должна удовлетворять кинематическим граничным условиям; Ci – неизвестные параметры, определяемые из уравнения Лагранжа. Это уравнение

(5.72)

приводит к системе из n алгебраических уравнений относительно параметров Ci .

В общем случае энергия деформации пластинки состоит из изгибной U и мембранной Um частей

, (5.73)

, (5.74)

где Мх. , М y . , М xy – изгибные усилия; N х. , Ny . , Nxy – мембранные усилия. Соответствующая поперечным силам часть энергии невелика и ею можно пренебречь.

Если u , v и w – составляющие действительного перемещения, px . , py и pz – составляющие интенсивности поверхностной нагрузки, Р i – сосредоточенная сила, Di соответствующее ей линейное перемещение, М j – сосредоточенный момент, q j – соответствующий ему угол поворота (рис. 5.12) то потенциальную энергию внешних сил можно представить так:

Если края пластинки допускают перемещения, то краевые силы vn . , mn . , mnt (рис. 5.12, (а)) увеличивают потенциал внешних сил


Рис. 5.12

Здесь n и t – нормаль и касательная к элементу края ds .

В декартовых координатах, с учетом известных выражений для усилий и кривизн

, (5.78)

полная потенциальная энергия Э прямоугольной пластинки размером a ´ b , при действии только вертикальной нагрузки pz

(5.79)

В качестве примера рассмотрим прямоугольную пластинку с отношением сторон 2a ´ 2b (рис. 5.13).

Пластинка защемлена по контуру и нагружена равномерной нагрузкой

pz = q = const . В этом случае выражение (5.79) для энергии Э упрощается

. (5.80)

Примем для w (x, y ) ряд

который удовлетворяет контурным условиям

Рис. 5.13

Удержим только первый член ряда

.

Тогда согласно (5.80)

.

Минимизируя энергию Э согласно (5..gif" width="273 height=57" height="57">.

.

Прогиб центра квадратной пластинки размером 2а ´ 2а

,

что на 2,5% больше точного решения 0,0202 qa 4/D . Отметим, что прогиб центра пластинки, опертой по четырем сторонам, в 3,22 раза больше.

Этот пример иллюстрирует достоинства метода: простоту и возможность получения хорошего результата. Пластинка может иметь различные очертания, переменную толщину. Затруднения в этом методе, как, впрочем, и в других энергетических методах, возникают при выборе подходящих координатных функций.

5.8. Метод ортогонализации

Метод ортогонализации, предложенный и, основан на следующем свойстве ортогональных функций j i . , j j

. (5.82)

Примером ортогональных функций на интервале (p , p ) могут служить тригонометрические функции cos nx и sin nx для которых

Если одна из функций, например функция j i (x ) тождественно равна нулю, то условие (5.82) выполняется для произвольной функции j j (x ).

Для решения задачи об изгибе пластинки уравнение –

можно представить так

, (5.83)

где F – площадь, ограниченная контуром пластинки; j ij – функции, задаваемые так, чтобы они удовлетворяли кинематическим и силовым граничным условиям задачи.

Представим приближенное решение уравнения изгиба пластинки (5.18) в виде ряда

. (5.84)

Если бы решение (5.84) было точным, то уравнение (5.83) выполнялось бы тождественно для любой системы координатных функций j ij . , поскольку в этом случае D Ñ2Ñ2 wn q = 0. Потребуем, чтобы уравнение D Ñ2Ñ2 wn q было ортогональным к семейству функций j ij , и требование это используем для определения коэффициентов Cij . . Подставляя (5.84) в (5.83) получим

. (5.85)

После выполнения некоторых преобразований получим следующую систему алгебраических уравнений для определения C ij

, (5.86)

причем h ij = h ji .

Методу Бубнова-Галеркина можно дать следующее толкование. Функция D Ñ2Ñ2 wn q = 0 является по сути дела уравнением равновесия и представляет собой проекцию внешних и внутренних сил, действующих на малый элемент пластинки в направлении вертикальной оси z . Функция прогибов wn есть перемещение в направлении той же оси, а функции j ij можно считать возможными перемещениями. Следовательно, уравнение (5.83) приближенно выражает равенство нулю работы всех внешних и внутренних сил на возможных перемещениях j ij . . Таким образом метод Бубнова-Галеркина по сути своей является вариационным.

В качестве примера рассмотрим прямоугольную пластинку, защемленную по контуру и нагруженную равномерно распределенной нагрузкой. Размеры пластинки и расположение координатных осей такие же, как на рис. 5.6.

Граничные условия

при x = 0, x = а : w = 0, ,

при y = 0, y = b : w = 0, .

Приближенное выражение для функции прогибов выберем в виде ряда (5.84) где функция j ij

удовлетворяет граничным условиям; Cij – искомые коэффициенты. Ограничившись одним членом ряда

получим следующее уравнение

После интегрирования

Откуда вычислим коэффициент С 11

,

который полностью соответствует коэффициенту С 11., полученному методом

В. Ритца – .

В первом приближении функция прогибов такова

.

Максимальный прогиб в центре квадратной пластинки размером а ´ а

.

5.9. Применение метода конечных разностей

Рассмотрим применение метода конечных разностей для прямоугольных пластинок со сложными контурными условиями. Разностный оператор – аналог дифференциального уравнения изогнутой поверхности пластинки (5.18), для квадратной сетки, при Dx = Dy = D принимает вид (3.54)

20 wi , j + 8 (wi , j + 1 + wi , j 1 + wi 1, j + wi + 1, j ) + 2 (wi 1, j 1 + wi 1, j + 1 +

Рис. 5.14

С учетом наличия трех осей симметрии нагружения и деформаций пластинки, можно ограничиться рассмотрением её восьмушки и определять величины прогибов только в узлах 1...10 (рис. 5.14, (б)). На рис. 5.14, (б) представлены сетка и нумерация узлов (D = а /4).

Поскольку края пластинки защемлены, то записав контурные условия (5.25), (5.26) в конечных разностях

По косинусам и синусам кратных дуг, т. е. ряд вида

или в комплексной форме

где a k , b k или, соответственно, c k наз. коэффициентами Т. р.
Впервые Т. р. встречаются у Л. Эйлера (L. Euler, 1744). Он получил разложения

В сер. 18 в. в связи с исследованиями задачи о свободном колебании струны возник вопрос о возможности представления функции, характеризующей начальное положение струны, в виде суммы Т. р. Этот вопрос вызвал острые споры, продолжавшиеся несколько десятилетий, лучших аналитиков того времени - Д. Бернулли (D. Bernoulli), Ж. Д"Аламбера (J. D"Alembert), Ж. Лагранжа (J. Lagrange), Л. Эйлера (L. Eu1ег). Споры относились к содержанию понятия функции. В то время функции обычно связывались с их аналитич. аданием, что приводило к рассмотрению только аналитических или кусочно аналитических функций. А здесь появилась необходимость для функции, графиком к-рой является достаточно произвольная , построить Т. р., представляющий эту функцию. Но значение этих споров больше. Фактически в них обсуждались или возникли в связи с ними вопросы, связанные со многими принципиально важными понятиями и идеями математич. анализа вообще,- представление функций рядами Тейлора и аналитич. родолжение функций, использование расходящихся рядов, пределов, бесконечные системы уравнений, функций многочленами и др.
И в дальнейшем, как и в этот начальный , теория Т. р. служила источником новых идей математи. интеграл Фурье, почти периодические функции, общие ортогональные ряды, абстрактный . Исследования по Т. р. послужили исходным пунктом при создании теории множеств. Т. р. являются мощным средством представления и исследования функций.
Вопрос, приведший к спорам математиков 18 в., был решен в 1807 Ж. Фурье (J. Fourier), указавшим формулы для вычисления коэффициентов Т. р. (1), к-рый должен. представлять на функцию f(x):

и применившим их при решении задач теплопроводности. Формулы (2) получили название формул Фурье, хотя они встречались ранее у А. Клеро (A. Clairaut, 1754), а Л. Эйлер (1777) приходил к ним с помощью почленного интегрирования. Т. р. (1), коэффициенты к-рого определяются по формулам (2), наз. рядом Фурье функции f, а числа а k , b k - коэффициентами Фурье.
Характер получаемых результатов зависит от того, как понимается представление функции рядом, как понимается интеграл в формулах (2). Современный теория Т. р. приобрела после появления интеграла Лебега.
Теорию Т. р. можно условно разделить на два больших раздела - теорию Фурье рядов, в к-рой предполагается, что ряд (1) является рядом Фурье нек-рой функции, и теорию общих Т. р., где такое предположение не делается. Ниже указываются основные результаты, полученные в теории общих Т. р. (при этом множеств и измеримость функций понимаются по Лебегу).
Первым систематич. исследованием Т. р., в к-ром не предполагалось, что эти ряды являются рядами Фурье, была диссертация В. Римана (В. Riemann, 1853). Поэтому теорию общих Т. р. наз. иногда римановской теорией Т. р.
Для изучения свойств произвольного Т. р. (1) со стремящимися к нулю коэффициентами Б. Риман рассматривал непрерывную функцию F(х), являющуюся суммой равномерно сходящегося ряда

полученного после двукратного почленного интегрирования ряда (1). Если ряд (1) сходится в нек-рой точке хк числу s, то в этой точке существует и равна s вторая симметрич. функции F:


то это приводит к суммированию ряда (1), порождаемому множителями наз. методом суммирования Римана. С помощью функции Fформулируется принцип локализации Римана, согласно к-рому поведение ряда (1) в точке хзависит только от поведения функции Fв произвольно малой окрестности этой точки.
Если Т. р. сходится на множестве положительной меры, то его коэффициенты стремятся к нулю ( Кантора - Лебега). Стремление к нулю коэффициентов Т. р. следует также из его сходимости на множестве второй категории (У. Юнг, W. Young, 1909).
Одной из центральных проблем теории общих Т. р. является задача о представлении произвольной функции Т. р. Усилив результаты Н. Н. Лузина (1915) о представлении функций Т. р., суммируемыми методами Абеля - Пуассона и Римана, Д. Е. Меньшов доказал (1940) следующую теорему, относящуюся к наиболее важному случаю, когда представление функции f понимается как Т. р. к f (x)почти всюду. Для каждой измеримой и конечной почти всюду функции f существует Т. р., сходящийся к ней почти всюду (теорема Меньшова). Следует отметить, что если даже f интегрируема, то в качестве такого ряда нельзя, вообще говоря, взять ряд Фурье функции f, т. к. существуют ряды Фурье, расходящиеся всюду.
Приведенная теорема Меньшова допускает следующее уточнение: если функция f измерима и конечна почти всюду, то существует такая что почти всюду и почленно продифференцированный ряд Фурье функции j сходится к f(х)почти всюду (Н. К. Бари, 1952).
Неизвестно (1984), можно ли в теореме Меньшова опустить условие конечности функции f почти всюду. В частности, неизвестно (1984), может ли Т. р. сходиться почти всюду к
Поэтому задача о представлении функций, к-рые могут принимать бесконечные значения на множестве положительной меры, была рассмотрена для случая, когда заменяется на более слабое требование - . Сходимость по мере к функциям, к-рые могут принимать бесконечные значения, определяется так: частных сумм Т. p. s n (x)сходится по мере к функции f(х). если где f n (x)сходятся к / (х)почти всюду, а последовательность сходится по мере к нулю. В этой постановке вопрос о представлении функций решен до конца: для каждой измеримой функции существует Т. р., сходящийся к ней по мере (Д. Е. Меньшов, 1948).
Много исследований посвящено проблеме единственности Т. р.: могут ли два разных Т. расходиться к одной и той же функции; в др. формулировке: если Т. р. сходится к нулю, то следует ли отсюда, что все коэффициенты ряда равны нулю. Здесь можно иметь в виду сходимость во всех точках или во всех точках вне нек-рого множества. Ответ на эти вопросы существенно зависит от свойств того множества, вне к-рого сходимость не предполагается.
Установилась следующая терминология. Множество наз. единственности множеством или U- множеством, если из сходимости Т. р. к нулю на всюду, кроме, быть может, точек множества Е, следует, что все коэффициенты этого ряда равны нулю. В противном случае Еназ. М-множеством.
Как показал Г. Кантор (G. Cantor, 1872), а также любое конечное являются U-множествами. Произвольное также является U-множеством (У. Юнг, 1909). С др. стороны, каждое множество положительной меры является М-множеством.
Существование М-множеств меры было установлено Д. Е. Меньшовым (1916), к-рый построил первый пример совершенного множества, обладающего этими свойствами. Этот результат имеет принципиальное значение в проблеме единственности. Из существования М-множеств меры нуль следует, что при представлении функций Т. р., сходящимися почти всюду, эти ряды определяются заведомо неоднозначно.
Совершенные множества могут быть и U-множествами (Н. К. Бари; А. Райхман, A. Rajchman, 1921). В проблеме единственности существенную роль играют весьма тонкие характеристики множеств меры нуль. Общий вопрос о классификации множеств нулевой меры на М- и U-множества остается (1984) открытым. Он не решен даже для совершенных множеств.
К проблеме единственности примыкает следующая задача. Если Т. р. сходится к функции то должен ли этот ряд быть рядом Фурье функции /. П. Дюбуа-Реймон (P. Du Bois-Reymond, 1877) дал положительный ответ на этот вопрос, если f интегрируема в смысле Римана, а ряд сходится к f(х)во всех точках. Из результатов III. Ж. Bалле Пуссена (Ch. J. La Vallee Poussin, 1912) следует, что ответ положителен и в том случае, когда всюду, кроме счетного множества точек, ряд сходится и его сумма конечна.
Если Т. р, в нек-рой точке x 0 сходится абсолютно, то точки сходимости этого ряда, а также точки его абсолютной сходимости расположены симметрично относительно точки x 0 (П. Фату, P. Fatou, 1906).
Согласно Данжуа - Лузина теореме из абсолютной сходимости Т. р. (1) на множестве положительной меры следует сходимость ряда и, следовательно, абсолютная сходимость ряда (1) для всех х. Этим свойством обладают и множества второй категории, а также нек-рые множества меры нуль.
Приведенный обзор охватывает только одномерные Т. р. (1). Имеются отдельные результаты, относящиеся к общим Т. р. от нескольких переменных. Здесь во многих случаях нужно еще найти естественные постановки задач.

Лит. : Бари Н. К., Тригонометрические ряды, М., 1961; Зигмунд А., Тригонометрические ряды, пер. с англ., т. 1-2, М., 1965; Лузин Н. Н., Интеграл и тригонометрический ряд, М.- Л., 1951; Риман Б., Соч., пер. с нем., М.- Л., 1948, с. 225-61.
С. А. Теляковский.

Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .


© 2024
polyester.ru - Журнал для девушек и женщин