20.08.2023

Математика для чайников. Матрицы и основные действия над ними. Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц Матрицы основные понятия действия над матрицами


Лекция 1. «Матрицы и основные действия над ними. Определители

Определение. Матрицей размера m n , где m - число строк, n - число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются a ij , где i - номер строки, а j - номер столбца.

А =

Основные действия над матрицами.

Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.

Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной .

Определение. Матрица вида:

= E ,

называется единичной матрицей .

Определение. Если a mn = a nm , то матрица называется симметрической .

Пример.
- симметрическая матрица

Определение. Квадратная матрица вида
называется диагональной матрицей.

Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера . Таким образом, возможно определить операции сложения и вычитания матриц:

Определение. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.


c ij = a ij b ij

С = А + В = В + А.

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число.

(А+В) =  А   В А( ) =  А   А

Пример. Даны матрицы А =
; B =
, найти 2А + В.

2А =
, 2А + В =
.

Операция умножения матриц .

Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:

A B = C ;
.

Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй.

Свойства операции умножения матриц.

1)Умножение матриц не коммутативно , т.е. АВ  ВА даже если определены оба произведения. Однако, если для каких – либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными.

Самым характерным примером может служить матрица, которая является перестановочной с любой другой матрицей того же размера.

Перестановочными могут быть только квадратные матрицы одного и того же порядка.

А Е = Е А = А

Очевидно, что для любых матриц выполняются следующее свойство:

A O = O ; O A = O ,

где О – нулевая матрица.

2) Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство:

(АВ)С=А(ВС).

3) Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения А(В+С) и (А+В)С, то соответственно:

А(В + С) = АВ + АС

(А + В)С = АС + ВС.

4) Если произведение АВ определено, то для любого числа  верно соотношение:

(AB ) = (A ) B = A (B ).

5) Если определено произведение АВ, то определено произведение В Т А Т и выполняется равенство:

(АВ) Т = В Т А Т, где

индексом Т обозначается транспонированная матрица.

6) Заметим также, что для любых квадратных матриц det (AB) = detA  detB.

Что такое det будет рассмотрено ниже.

Определение . Матрицу В называют транспонированной матрицей А, а переход от А к В транспонированием , если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.

А =
; В = А Т =
;

другими словами, b ji = a ij .

В качестве следствия из предыдущего свойства (5) можно записать, что:

(ABC ) T = C T B T A T ,

при условии, что определено произведение матриц АВС.

Пример. Даны матрицы А =
, В = , С =
и число
 = 2. Найти А Т В+  С.

A T =
; A T B =
=
=
;

C =
; А Т В+  С =
+
=
.

Пример. Найти произведение матриц А = и В =
.

АВ = 
=
.

ВА =
 = 2  1 + 4  4 + 1  3 = 2 + 16 + 3 = 21.

Пример. Найти произведение матриц А=
, В =

АВ =

=
=
.

Определители (детерминанты).

Определение. Определителем квадратной матрицы А=
называется число, которое может быть вычислено по элементам матрицы по формуле:

det A =
, где (1)

М – детерминант матрицы, полученной из исходной вычеркиванием первой строки и k – го столбца. Следует обратить внимание на то, что определители имеют только квадратные матрицы, т.е. матрицы, у которых число строк равно числу столбцов.

Формула (1) позволяет вычислить определитель матрицы по первой строке, также справедлива формула вычисления определителя по первому столбцу:

det A =
(2)

Вообще говоря, определитель может вычисляться по любой строке или столбцу матрицы, т.е. справедлива формула:

detA =
, i = 1,2,…,n . (3)

Очевидно, что различные матрицы могут иметь одинаковые определители.

Определитель единичной матрицы равен 1.

Для указанной матрицы А число М 1к называется дополнительным минором элемента матрицы a 1 k . Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах.

Определение. Дополнительный минор произвольного элемента квадратной матрицы a ij равен определителю матрицы, полученной из исходной вычеркиванием i -ой строки и j -го столбца.

Свойство1. Важным свойством определителей является следующее соотношение:

det A = det A T ;

Свойство 2. det (A B) = det A det B.

Свойство 3. det (AB ) = detA detB

Свойство 4. Если в квадратной матрице поменять местами какие-либо две строки (или столбца), то определитель матрицы изменит знак, не изменившись по абсолютной величине.

Свойство 5. При умножении столбца (или строки) матрицы на число ее определитель умножается на это число.

Свойство 6. Если в матрице А строки или столбцы линейно зависимы, то ее определитель равен нулю.

Определение: Столбцы (строки) матрицы называются линейно зависимыми , если существует их линейная комбинация, равная нулю, имеющая нетривиальные (не равные нулю) решения.

Свойство 7. Если матрица содержит нулевой столбец или нулевую строку, то ее определитель равен нулю. (Данное утверждение очевидно, т.к. считать определитель можно именно по нулевой строке или столбцу.)

Свойство 8. Определитель матрицы не изменится, если к элементам одной из его строк(столбца) прибавить(вычесть) элементы другой строки(столбца), умноженные на какое-либо число, не равное нулю.

Свойство 9. Если для элементов какой- либо строки или столбца матрицы верно соотношение: d = d 1 d 2 , e = e 1 e 2 , f = det (AB).

1-й способ: det A = 4 – 6 = -2; det B = 15 – 2 = 13; det (AB) = det A  det B = -26.

2- й способ: AB =
, det (AB ) = 7 18 - 8 19 = 126 –

152 = -26.

Определение. Матрицей размера m´n, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются a ij , где i- номер строки, а j- номер столбца.

Основные действия над матрицами.

Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.

Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной .

Определение. Если = , то матрица называется симметрической .

Пример. - симметрическая матрица

Определение. Квадратная матрица вида называется диагональной матрицей.

Определение. Диагональная матрица, у которой на главной диагонали стоят только единицы:

= E , называется единичной матрицей .

Определение. Матрица, у которой под главной диагональю находятся только нулевые элементы, называется верхней треугольной матрицей. Если у матрицы над главной диагональю находятся только нулевые элементы, то она называется нижней треугольной матрицей.

Определение. Две матрицы называются равными , если они одной размерности и выполняется равенство:

· Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера . Таким образом, возможно определить операции сложения и вычитания матриц:

Определение. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.

С = А + В = В + А.

· Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число.

a (А+В) =aА ± aВ

А(a±b) = aА ± bА

Пример. Даны матрицы А = ; B = , найти 2А + В.

2А = , 2А + В = .

· Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:

Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй.

Пример.

· Определение . Матрицу В называют транспонированной матрицей А, а переход от А к В транспонированием , если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.

А = ; В = А Т = ;

другими словами, = .

Обратная матрица .

Определение. Если существуют квадратные матрицы Х и А одного порядка, удовлетворяющие условию:



где Е - единичная матрица того же самого порядка, что и матрица А, то матрица Х называется обратной к матрице А и обозначается А -1 .

Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.

Обратная матрица

Может быть построена по следующей схеме:

Если , то матрица называется невырожденной , а в противном случае – вырожденной.

Обратная матрицаможет быть построена только для невырожденных матриц.

Свойства обратных матриц.

1) (A -1) -1 = A;

2) (AB) -1 = B -1 A -1

3) (A T) -1 = (A -1) T .

Рангом матрицы называется наивысший порядок отличных от нуля миноров этой матрицы.

В матрице порядка m´n минор порядка r называется базисным , если он не равен нулю, а все миноры порядка r+1 и выше равны нулю, или не существуют вовсе, т.е. r совпадает с меньшим из чисел m или n.

Столбцы и строки матрицы, на которых стоит базисный минор, также называются базисными.

В матрице может быть несколько различных базисных миноров, имеющих одинаковый порядок.

Очень важным свойством элементарных преобразований матриц является то, что они не изменяют ранг матрицы.

Определение. Матрицы, полученные в результате элементарного преобразования, называются эквивалентными.

Надо отметить, что равные матрицы и эвивалентные матрицы - понятия совершенно различные.

Теорема. Наибольшее число линейно независимых столбцов в матрице равно числу линейно независимых строк.

Т.к. элементарные преобразования не изменяют ранг матрицы, то можно существенно упростить процесс нахождения ранга матрицы.

Пример. Определить ранг матрицы.

Некоторые свойства операций над матрицами.
Матричные выражения

А сейчас последует продолжение темы, в котором мы рассмотрим не только новый материал, но и отработаем действия с матрицами .

Некоторые свойства операций над матрицами

Существует достаточно много свойств, которые касаются действий с матрицами, в той же Википедии можно полюбоваться стройными шеренгами соответствующих правил. Однако на практике многие свойства в известном смысле «мертвЫ», поскольку в ходе решения реальных задач используются лишь некоторые из них. Моя цель – рассмотреть прикладное применение свойств на конкретных примерах, и если вам необходима строгая теория, пожалуйста, воспользуйтесь другим источником информации.

Рассмотрим некоторые исключения из правила , которые потребуются для выполнения практических задач.

Если у квадратной матрицы существует обратная матрица , то их умножение коммутативно:

Единичной матрицей называется квадратная матрица, у которой на главной диагонали расположены единицы, а остальные элементы равны нулю. Например: , и т.д.

При этом справедливо следующее свойство : если произвольную матрицу умножить слева или справа на единичную матрицу подходящих размеров, то в результате получится исходная матрица:

Как видите, здесь также имеет место коммутативность матричного умножения.

Возьмём какую-нибудь матрицу, ну, скажем, матрицу из предыдущей задачи: .

Желающие могут провести проверку и убедиться, что:

Единичная матрица для матриц – это аналог числовой единицы для чисел, что особенно хорошо видно из только что рассмотренных примеров.

Коммутативность числового множителя относительно умножения матриц

Для матриц и действительного числа справедливо следующее свойство:

То есть числовой множитель можно (и нужно) вынести вперёд, чтобы он «не мешал» умножить матрицы.

Примечание : вообще говоря, формулировка свойства неполная – «лямбду» можно разместить в любом месте между матрицами, хоть в конце. Правило остаётся справедливым, если перемножаются три либо бОльшее количество матриц.

Пример 4

Вычислить произведение

Решение :

(1) Согласно свойству перемещаем числовой множитель вперёд. Сами матрицы переставлять нельзя!

(2) – (3) Выполняем матричное умножение.

(4) Здесь можно поделить каждое число 10, но тогда среди элементов матрицы появятся десятичные дроби, что не есть хорошо. Однако замечаем, что все числа матрицы делятся на 5, поэтому умножаем каждый элемент на .

Ответ :

Маленькая шарада для самостоятельного решения:

Пример 5

Вычислить , если

Решение и ответ в конце урока.

Какой технический приём важен в ходе решения подобных примеров? С числом разбираемся в последнюю очередь .

Прицепим к локомотиву ещё один вагон:

Как умножить три матрицы?

Прежде всего, ЧТО должно получиться в результате умножения трёх матриц ? Кошка не родит мышку. Если матричное умножение осуществимо, то в итоге тоже получится матрица. М-да, хорошо мой преподаватель по алгебре не видит, как я объясняю замкнутость алгебраической структуры относительно её элементов =)

Произведение трёх матриц можно вычислить двумя способами:

1) найти , а затем домножить на матрицу «цэ»: ;

2) либо сначала найти , потом выполнить умножение .

Результаты обязательно совпадут, и в теории данное свойство называют ассоциативностью матричного умножения :

Пример 6

Перемножить матрицы двумя способами

Алгоритм решения двухшаговый: находим произведение двух матриц, затем снова находим произведение двух матриц.

1) Используем формулу

Действие первое:

Действие второе:

2) Используем формулу

Действие первое:

Действие второе:

Ответ :

Более привычен и стандартен, конечно же, первый способ решения, там «как бы всё по порядку». Кстати, по поводу порядка. В рассматриваемом задании часто возникает иллюзия, что речь идёт о каких-то перестановках матриц. Их здесь нет. Снова напоминаю, что в общем случае ПЕРЕСТАВЛЯТЬ МАТРИЦЫ НЕЛЬЗЯ . Так, во втором пункте на втором шаге выполняем умножение , но ни в коем случае не . С обычными числами такой бы номер прошёл, а с матрицами – нет.

Свойство ассоциативности умножения справедливо не только для квадратных, но и для произвольных матриц – лишь бы они умножались:

Пример 7

Найти произведение трёх матриц

Это пример для самостоятельного решения. В образце решения вычисления проведены двумя способами, проанализируйте, какой путь выгоднее и короче.

Свойство ассоциативности матричного умножения имеет место быть и для бОльшего количества множителей.

Теперь самое время вернуться к степеням матриц. Квадрат матрицы рассмотрен в самом начале и на повестке дня вопрос:

Как возвести матрицу в куб и более высокие степени?

Данные операции также определены только для квадратных матриц. Чтобы возвести квадратную матрицу в куб, нужно вычислить произведение:

Фактически это частный случай умножения трёх матриц, по свойству ассоциативности матричного умножения: . А матрица, умноженная сама на себя – это квадрат матрицы:

Таким образом, получаем рабочую формулу:

То есть задание выполняется в два шага: сначала матрицу необходимо возвести в квадрат, а затем полученную матрицу умножить на матрицу .

Пример 8

Возвести матрицу в куб.

Это небольшая задачка для самостоятельного решения.

Возведение матрицы в четвёртую степень проводится закономерным образом:

Используя ассоциативность матричного умножения, выведем две рабочие формулы. Во-первых: – это произведение трёх матриц.

1) . Иными словами, сначала находим , затем домножаем его на «бэ» – получаем куб, и, наконец, выполняем умножение ещё раз – будет четвёртая степень.

2) Но существует решение на шаг короче: . То есть, на первом шаге находим квадрат и, минуя куб, выполняем умножение

Дополнительное задание к Примеру 8:

Возвести матрицу в четвёртую степень.

Как только что отмечалось, сделать это можно двумя способами:

1) Коль скоро известен куб, то выполняем умножение .

2) Однако, если по условию задачи требуется возвести матрицу только в четвёртую степень , то путь выгодно сократить – найти квадрат матрицы и воспользоваться формулой .

Оба варианта решения и ответ – в конце урока.

Аналогично матрица возводится в пятую и более высокие степени. Из практического опыта могу сказать, что иногда попадаются примеры на возведение в 4-ю степень, а вот уже пятой степени что-то не припомню. Но на всякий случай приведу оптимальный алгоритм:

1) находим ;
2) находим ;
3) возводим матрицу в пятую степень: .

Вот, пожалуй, и все основные свойства матричных операций, которые могут пригодиться в практических задачах.

Во втором разделе урока ожидается не менее пёстрая тусовка.

Матричные выражения

Повторим обычные школьные выражения с числами. Числовое выражение состоит из чисел, знаков математических действий и скобок, например: . При расчётах справедлив знакомый алгебраический приоритет: сначала учитываются скобки , затем выполняется возведение в степень / извлечение корней , потом умножение / деление и в последнюю очередь – сложение /вычитание .

Если числовое выражение имеет смысл, то результат его вычисления является числом , например:

Матричные выражения устроены практически так же! С тем отличием, что главными действующими лицами выступают матрицы. Плюс некоторые специфические матричные операции, такие, как транспонирование и нахождение обратной матрицы.

Рассмотрим матричное выражение , где – некоторые матрицы. В данном матричном выражении три слагаемых и операции сложения/вычитания выполняются в последнюю очередь.

В первом слагаемом сначала нужно транспонировать матрицу «бэ»: , потом выполнить умножение и внести «двойку» в полученную матрицу. Обратите внимание, что операция транспонирования имеет более высокий приоритет, чем умножение . Скобки, как и в числовых выражениях, меняют порядок действий: – тут сначала выполняется умножение , потом полученная матрица транспонируется и умножается на 2.

Во втором слагаемом в первую очередь выполняется матричное умножение , и обратная матрица находится уже от произведения. Если скобки убрать: , то сначала необходимо найти обратную матрицу , а затем перемножить матрицы: . Нахождение обратной матрицы также имеет приоритет перед умножением .

С третьим слагаемым всё очевидно: возводим матрицу в куб и вносим «пятёрку» в полученную матрицу.

Если матричное выражение имеет смысл, то результат его вычисления является матрицей .

Все задания будут из реальных контрольных работ, и мы начнём с самого простого:

Пример 9

Даны матрицы . Найти:

Решение :порядок действий очевиден, сначала выполняется умножение, затем сложение.


Сложение выполнить невозможно, поскольку матрицы разных размеров.

Не удивляйтесь, заведомо невозможные действия часто предлагаются в заданиях данного типа.

Пробуем вычислить второе выражение:

Тут всё нормально.

Ответ : действие выполнить невозможно, .


В этой статье мы разберемся как проводится операция сложения над матицами одного порядка, операция умножения матрицы на число и операция умножения матриц подходящего порядка, аксиоматически зададим свойства операций, а также обсудим приоритет операций над матрицами. Параллельно с теорией будем приводить подробные решения примеров, в которых выполняются операции над матрицами.

Сразу заметим, что все нижесказанное относится к матрицам, элементами которых являются действительные (или комплексные) числа.

Навигация по странице.

Операция сложения двух матриц.

Определение операции сложения двух матриц.

Операция сложения определена ТОЛЬКО ДЛЯ МАТРИЦ ОДНОГО ПОРЯДКА. Другими словами, нельзя найти сумму матриц разной размерности и вообще нельзя говорить о сложении матриц разной размерности. Также нельзя говорить о сумме матрицы и числа или о сумме матрицы и какого-нибудь другого элемента.

Определение.

Сумма двух матриц и - это матрица, элементы которой равны сумме соответствующих элементов матриц А и В , то есть, .


Таким образом, результатом операции сложения двух матриц является матрица того же порядка.

Свойства операции сложения матриц.

Какими же свойствами обладает операция сложения матриц? На этот вопрос достаточно легко ответить, отталкиваясь от определения суммы двух матриц данного порядка и вспомнив свойства операции сложения действительных (или комплексных) чисел.

  1. Для матриц А , В и С одного порядка характерно свойство ассоциативности сложения А+(В+С)=(А+В)+С .
  2. Для матриц данного порядка существует нейтральный элемент по сложению, которым является нулевая матрица. То есть, справедливо свойство А+О=А .
  3. Для ненулевой матрицы А данного порядка существует матрица (–А) , их суммой является нулевая матрица: А+(-А)=О .
  4. Для матриц А и В данного порядка справедливо свойство коммутативности сложения А+В=В+А .

Следовательно, множество матриц данного порядка порождает аддитивную группу Абеля (абелеву группу относительно алгебраической операции сложения).

Сложение матриц - решения примеров.

Рассмотрим несколько примеров сложения матриц.

Пример.

Найдите сумму матриц и .

Решение.

Порядки матриц А и В совпадают и равны 4 на 2 , поэтому мы можем проводить операцию сложения матриц и в результате должны получить матрицу порядка 4 на 2 . Согласно определению операции сложения двух матриц, сложение производим поэлементно:

Пример.

Найдите сумму двух матриц и элементами которых являются комплексные числа.

Решение.

Так как порядки матриц равны, то мы можем выполнить сложение.

Пример.

Выполните сложение трех матриц .

Решение.

Сначала сложим матрицу А с В , затем к полученной матрице прибавим С :

Получили нулевую матрицу.

Операция умножения матрицы на число.

Определение операции умножения матрицы на число.

Операция умножения матрицы на число определена ДЛЯ МАТРИЦ ЛЮБОГО ПОРЯДКА.

Определение.

Произведение матрицы и действительного (или комплексного) числа - это матрица, элементы которой получаются умножением соответствующих элементов исходной матрицы на число , то есть, .

Таким образом, результатом умножения матрицы на число является матрица того же порядка.

Свойства операции умножения матрицы на число.

Из свойств операции умножения матрицы на число следует, что умножение нулевой матрицы на число ноль даст нулевую матрицу, а произведение произвольного числа и нулевой матрицы есть нулевая матрица.

Умножение матрицы на число - примеры и их решение.

Разберемся с проведением операция умножения матрицы на число на примерах.

Пример.

Найдите произведение числа 2 и матрицы .

Решение.

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число:

Пример.

Выполните умножение матрицы на число .

Решение.

Умножаем каждый элемент заданной матрицы на данное число:

Операция умножения двух матриц.

Определение операции умножения двух матриц.

Операция умножения двух матриц А и В определяется только для случая, когда ЧИСЛО СТОЛБЦОВ МАТРИЦЫ А РАВНО ЧИСЛУ СТРОК МАТРИЦЫ В .

Определение.

Произведение матрицы А порядка и матрицы В порядка - это такая матрица С порядка , каждый элемент которой равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицы В , то есть,


Таким образом, результатом операции умножения матрицы порядка на матрицу порядка является матрица порядка .

Умножение матрицы на матрицу - решения примеров.

Разберемся с умножением матриц на примерах, после этого перейдем к перечислению свойств операции умножения матриц.

Пример.

Найдите все элементы матрицы С , которая получается при умножении матриц и .

Решение.

Порядок матрицы А равен p=3 на n=2 , порядок матрицы В равен n=2 на q=4 , следовательно, порядок порядок произведения этих матриц будет p=3 на q=4 . Воспользуемся формулой

Последовательно принимаем значения i от 1 до 3 (так как p=3 ) для каждого j от 1 до 4 (так как q=4 ), а n=2 в нашем случае, тогда

Так вычислены все элементы матрицы С , и матрица, полученная при умножении двух заданных матриц, имеет вид .

Пример.

Выполните умножение матриц и .

Решение.

Порядки исходных матриц позволяют провести операцию умножения. В результате мы должны получить матрицу порядка 2 на 3.

Пример.

Даны матрицы и . Найдите произведение матриц А и В , а также матриц В и А .

Решение.

Так как порядок матрицы А равен 3 на 1 , а матрицы В равен 1 на 3 , то А⋅В будет иметь порядок 3 на 3 , а произведение матриц В и A будет иметь порядок 1 на 1 .

Как видите, . Это одно из свойств операции умножения матриц.

Свойства операции умножения матриц.

Если матрицы А , В и С подходящих порядков, то справедливы следующие свойства операции умножения матриц .

Следует отметить, что при подходящих порядках произведение нулевой матрицы О на матрицу А дает нулевую матрицу. Произведение А на О также дает нулевую матрицу, если порядки позволяют проводить операцию умножения матриц.

Среди квадратных матриц существуют так называемые перестановочные матрицы , операция умножения для них коммутативна, то есть . Примером перестановочных матриц является пара единичной матрицы и любой другой матрицы того же порядка, так как справедливо .

Приоритет операций над матрицами.

Операции умножения матрицы на число и умножения матрицы на матрицу наделены равным приоритетом. В то же время эти операции имеют приоритет выше, чем операция сложения двух матриц. Таким образом, сначала выполняется умножение матрицы на число и умножение матриц, а уже потом производится сложение матриц. Однако, порядок выполнения операций над матрицами может быть задан явно с помощью скобок.

Итак, приоритет операций над матрицами аналогичен приоритету, присвоенному операциям сложения и умножения действительных чисел.

Пример.

Даны матрицы . Выполните с заданными матрицами указанные действия .

Решение.

Начинаем с умножения матрицы А на матрицу В :

Теперь умножаем единичную матрицу второго порядка Е на два:

Складываем две полученные матрицы:

Осталось выполнить операцию умножения полученной матрицы на матрицу А :

Следует заметить, что операции вычитания матриц одного порядка А и В как таковой не существует. Разность двух матриц по сути есть сумма матрицы А и матрицы В , предварительно умноженной на минус единицу: .

Операция возведения квадратной матрицы в натуральную степень так же не самостоятельна, так как является последовательным умножением матриц.

Подведем итог.

На множестве матриц определены три операции: сложение матриц одного порядка, умножение матрицы на число и умножение матриц подходящих порядков. Операция сложения на множестве матриц данного порядка порождает группу Абеля.

Матрицы и определители

1. 1 Матрицы. Понятия.

Прямоугольной матрицей размера m x n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать матрицу в виде

или сокращенно в виде A = (a ij) (i = ; j = ). Числа a ij , составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. Две матрицы A = (a ij) и B = (b ij) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a ij = b ij .

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. Матрица размера m x n , все элементы которой равны нулю, называются нулевой матрицей и обозначается через 0. Элементы матрицы с одинаковыми индексами называют элементами главной диагонали. Если число строк матрицы равно числу столбцов, то есть m = n , то матрицу называют квадратной порядка n . Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными матрицами и записываются так:

Если все элементы a ii диагональной матрицы равны 1, то матрица называется единичной и обозначается буквой Е:

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование матрицы, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Пусть дана матрица (4.1). Переставим строки со столбцами. Получим матрицу

которая будет транспонированной по отношению к матрице А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Основные операции над матрицами.

Основными арифметическими операциями над матрицами являются умножение матрицы на число, сложение и умножение матриц.



Перейдем к определению основных операций над матрицами.

Сложение матриц : Суммой двух матриц, например: A и B, имеющих одинаковое количество строк и столбцов, иными словами, одних и тех же порядков m и n называется матрица С = (Сij)(i = 1, 2, …m; j = 1, 2, …n) тех же порядков m и n, элементы Cij которой равны.

Cij = Aij + Bij (i = 1, 2, …, m; j = 1, 2, …, n) (1.2)

Для обозначения суммы двух матриц используется запись C = A + B. Операция составления суммы матриц называется их сложением

Итак по определению имеем:

Из определения суммы матриц, а точнее из формулы (1.2) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно:

1) переместительным свойством: A + B = B + A

2) сочетательным свойством: (A + B) + C = A + (B + C)

Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.

Умножение матрицы на число :

Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n) на вещественное число называется матрица C = (Cij) (i = 1, 2, … , m; j = 1, 2, …, n), элементы которой равны

Cij = Aij (i = 1, 2, …, m; j = 1, 2, …, n). (1.3)

Для обозначения произведения матрицы на число используется запись C = A или C = A . Операция составления произведения матрицы на число называется умножением матрицы на это число.

Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами:

1) распределительным свойством относительно суммы матриц:

(A + B) = A + B

2) сочетательным свойством относительно числового множителя:

3) распределительным свойством относительно суммы чисел:

( + ) A = A + A.

Замечание: Разностью двух матриц A и B одинаковых порядков естественно назвать такую матрицу C тех же порядков, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: C = A – B.

Перемножение матриц :

Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n), имеющей порядки соответственно равные m и n, на матрицу B = (Bij) (i = 1, 2, …, n;

j = 1, 2, …, p), имеющую порядки соответственно равные n и p, называется матрица C = (Сij) (i = 1, 2, … , m; j = 1, 2, … , p), имеющая порядки, соответственно равные m и p, и элементы Cij, определяемые формулой

Cij = (i = 1, 2, …, m; j = 1, 2, …, p) (1.4)

Для обозначения произведения матрицы A на матрицу B используют запись

C = AB. Операция составления произведения матрицы A на матрицу B называется перемножением этих матриц. Из сформулированного выше определения вытекает, что матрицу A можно умножить не на всякую матрицу B: необходимо чтобы число столбцов матрицы A было равно числу строк матрицы B. Для того чтобы оба произведения AB и BA не только были определены, но и имели одинаковый порядок, необходимо и достаточно, чтобы обе матрицы A и B были квадратными матрицами одного и того же порядка.

Формула (1.4) представляет собой правило составления элементов матрицы C,

являющейся произведением матрицы A на матрицу B. Это правило можно сформулировать и словесно: Элемент Cij, стоящий на пересечении i-й строки и j-го столбца матрицы C = AB, равен сумме попарных произведений соответствующих элементов i-й строки матрицы A и j-го столбца матрицы B. В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка

Из формулы (1.4) вытекают следующие свойства произведения матрицы A на матрицу B:

1) сочетательное свойство: (AB) C = A (BC);

2) распределительное относительно суммы матриц свойство:

(A + B) C = AC + BC или A (B + C) = AB + AC.

Вопрос о перестановочном свойстве произведения матриц имеет смысл ставить лишь для квадратных матриц одинакового порядка. Элементарные примеры показывают, что произведений двух квадратных матриц одинакового порядка не обладает, вообще говоря, перестановочным свойством. В самом деле, если положить

A = , B = , то AB = , а BA =

Те же матрицы, для произведения которых справедливо перестанавочное свойство, принято называть коммутирующими.

Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Среди всех диагональных матриц с совпадающими элементами на главной диагонали особо важную роль играют две матрицы. Первая из этих матриц получается, когда все элементы главной диагонали равны единице, называется единичной матрицей n-ого порядка и обозначается символом E . Вторая матрица получается при всех элементах равных нулю и называется нулевой матрицей n-ого порядка и обозначается символом O. Допустим, что существует произвольная матрица A, тогда

AE = EA = A, AO = OA = O.

Первая из формул характеризует особую роль единичной матрицы Е, аналогичную то роли, которую играет число 1 при перемножении вещественных чисел. Что же касается особой роли нулевой матрицы О, то ее выявляет не только вторая из формул, но и элементарно проверяемое равенство: A + O = O + A = A. Понятие нулевой матрицы можно вводить и не для квадратных матриц.

Ранг матрицы

Рассмотрим прямоугольную матрицу (4.1). Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k -го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n . Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

0 ≤ r(A) ≤ min (m,n).

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так:

Канонической матрицей называется матрица, у которой в начале

главной диагонали стоят подряд несколько единиц (число которых

может равняться нулю), а все остальные элементы равны нулю,

например, .

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Обратная матрица

Рассмотрим квадратную матрицу

Обозначим Δ = det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А -1 . Обратная матрица вычисляется по формуле

А -1 = 1/Δ , (4.5)

где А ij - алгебраические дополнения элементов a ij .

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

2. Определители

Для каждой квадратной матрицы определено число, называемое определителем матрицы, детерминантом матрицы или просто определителем (детерминантом).

Определение. Определителем квадратной матрицы первого порядка называется число, равное единственному элементу этой матрицы: A={a}, detA=|A|=a.

Пусть A - произвольная квадратная матрица порядка n, n>1:

Определение Определителем n-го порядка (определителем квадратной матрицы n-го порядка n), n>1, называется число, равное

где - определитель квадратной матрицы полученной из матрицы A вычеркиванием превой строки и j-го столбца.

Для определителей 2-го и 3-го порядка легко получить простые выражения через элементы матрицы.

Определитель 2-го порядка:

Определитель 3-го порядка:

2.1. Минор и алгебраическое дополнение элемента

Определение. Минором элемента матрицы называется определитель матрицы, полученной вычеркиванием строки и столбца, в которых расположен элемент. Обозначаем: минор элемента a ij - .

Определение. Алгебраическим дополнением элемента матрицы называется его минор, умноженный на -1 в степени, равной сумме номеров строки и столбца, в которых расположен элемент. Обозначаем: алгебраическое дополнение элемента a ij - .

Таким образом можно переформулировать определение определителя n-го порядка:

определитель n-го порядка, n>1, равен сумме произведений элементов первой строки на их алгебраические дополнения.

Пример.

Теорема о вычислении определителя разложением по любой строке

Теорема. Определитель n-го порядка, n>1, равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Пример. Вычислим определитель из предыдущего примера разложением по второй строке:

Следствие. Определитель треугольной матрицы равен произведению диагональных элементов. (Доказать самостоятельно).


© 2024
polyester.ru - Журнал для девушек и женщин