16.12.2023

Строение атомного ядра. Ядерные силы — Гипермаркет знаний. Состав и строение атомного ядра (кратко) Строение ядра атома физика кратко


Каждый атом состоит из ядра и атомной оболочки , в состав которых входят различные элементарные частицы – нуклоны и электроны (рис. 5.1). Ядро – центральная часть атома, содержащая практически всю массу атома и обладающая положительным зарядом. Ядро состоит из протонов и нейтронов , которые являются двухзарядными состояниями одной элементарной частицы – нуклона. Заряд протона +1; нейтрона 0.

Заряд ядра атома равен Z . ē , где Z – порядковый номер элементов (атомный номер) в периодической системе Менделеева, равный числу протонов в ядре; ē – заряд электрона.

Число нуклонов в ядре называется массовым числом элемента (A ):

A = Z + N ,

где Z – число протонов; N – число нейтронов в атомном ядре.

Для протонов и нейтронов массовое число принимают равное 1, для электронов равное 0.


Рис. 5.1. Строение атома

Общеприняты следующие обозначения для какого-нибудь химического элемента X : , здесь A – массовое число, Z – атомный номер элемента.

Атомные ядра одного и того же элемента могут содержать разное число нейтронов N . Такие разновидности атомных ядер называются изотопами данного элемента. Таким образом, изотопы имеют: одинаковый атомный номер, но различные массовые числа A . Большинство химических элементов представляют собой смесь различных изотопов, например изотопы урана:

.

Атомные ядра различных химических элементов могут иметь одинаковое массовое число А (с разным числом протонов Z ). Такие разновидности атомных ядер называются изобарами . Например:

– – – ; –

Атомная масса

Для характеристики массы атомов и молекул используют понятие атомной массы M – это относительная величина, которая определяется по отношению
к массе атома углерода и принимается равной m а = 12,000 000. Для
абсолютного определения атомной массы была введена атомная единица
массы
(а.е.м.), которая определяется по отношению к массе атома углерода в следующем виде:

.

Тогда атомную массу элемента можно определить как:

где М – атомная масса изотопов рассматриваемого элемента. Это выражение облегчает определение массы ядер элементов, элементарных частиц, частиц – продуктов радиоактивных превращений и т. д.

Дефект массы ядра и энергия связи ядра

Энергия связи нуклона – физическая величина, численно равная работе, которую нужно совершить для удаления нуклона из ядра без сообщения ему кинетической энергии.

Нуклоны связаны в ядре благодаря ядерным силам, которые значительно превосходят силы электростатического отталкивания, действующие между протонами. Для расщепления ядра необходимо преодолеть эти силы, т. е. затратить энергию. Соединение нуклонов с образованием ядра, напротив, сопровождается высвобождением энергии, которую называют энергией связи ядра ΔW св:

,

где – так называемый дефект массы ядра; с ≈ 3 . 10 8 м/с – скорость света в вакууме.

Энергия связи ядра – физическая величина, равная работе, которую нужно совершить для расщепления ядра на отдельные нуклоны без сообщения им кинетической энергии.

При образовании ядра происходит уменьшение его массы, т. е. масса ядра меньше, чем сумма масс составляющих его нуклонов, эта разница называется дефектом масс Δm :

где m p – масса протона; m n – масса нейтрона; m ядр – масса ядра.

При переходе от массы ядра m ядр к атомным массам элемента m а, это выражение можно записать в следующем виде:

где m H – масса водорода; m n –масса нейтрона и m а – атомная масса элемента, определенные через атомную единицу массы (а.е.м.).

Критерием устойчивости ядра является строгое соответствие в нем числа протонов и нейтронов. Для устойчивости ядер справедливо следующее соотношение:

,

где Z – число протонов; A – массовое число элемента.

Из известных к настоящему времени примерно 1700 видов ядер, только около 270 являются стабильными. Причем в природе преобладают четно­-четные ядра (т. е. с четным числом протонов и нейтронов), которые являются особенно стабильными.

Радиоактивность

Радиоактивность – превращение неустойчивых изотопов одного химического элемента в изотопы другого химического элемента с выделением некоторых элементарных частиц. Различают: естественную и искусственную радиоактивность.

К основным видам относят:

– α-излучение (распад);

– β-излучение (распад);

– спонтанное деление ядра.

Ядро распадающегося элемента называется материнским , а ядро образующегося элемента – дочерним . Самопроизвольный распад атомных ядер подчиняется следующему закону радиоактивного распада:

где N 0 – число ядер в химическом элементе в начальный момент времени; N – число ядер в момент времени t ; – так называемая «постоянная» распада, которая представляет собой долю ядер, распавшихся в единицу времени.

Величина обратная «постоянной» распада , характеризует среднюю продолжительность жизни изотопа. Характеристикой устойчивости ядер относительно к распаду является период полураспада , т. е. время, в течение которого первоначальное количество ядер уменьшается вдвое:

Связь между и :

, .

При радиоактивном распаде выполняется закон сохранения заряда:

,

где – заряд распавшихся или получившихся (образовавшихся) «осколков»; и правило сохранения массовых чисел :

где – массовое число образовавшихся (распавшихся) «осколков».

5.4.1. α и β-распад

α-распад представляет собой излучение ядер гелия . Характерен для «тяжелых» ядер с большими массовыми числами A > 200 и зарядом z > 82.

Правило смещения при α-распаде имеет следующий вид (происходит образование нового элемента):

.

; .

Отметим, что α-распад (излучение) обладает наибольшей ионизирующей способностью, но наименьшей проницаемостью.

Различают следующие виды β-распада :

– электронный β-распад (β – -распад);

– позитронный β-распад (β + -распад);

– электронный захват (k-захват).

β – -распад происходит при избытке нейтронов с выделением электронов и антинейтрино :

.

β + -распад происходит при избытке протонов с выделением позитронов и нейтрино :

.

Для электронного захвата (k -захвата) характерно следующее превра­щение:

.

Правило смещения при β-распаде имеет следующий вид (происходит образование нового элемента):

для β – -распада: ;

для β + -распада: .

β-распад (излучение) обладает наименьшей ионизирующей способностью, но наибольшей проницаемостью.

α и β-излучения сопровождаются γ-излучением , которое представляет собой излучение фотонов и не является самостоятельным видом радиоактивного излучения.

γ-фотоны выделяются при уменьшении энергии возбужденных атомов и не вызывают изменение массового числа A и изменение заряда Z . γ-излучение обладает наибольшей проникающей способностью.

Активность радионуклидов

Активность радионуклидов – мера радиоактивности, характеризующая число распадов ядер в единицу времени. Для определенного количества радионуклидов в определенном энергетическом состоянии в заданный момент времени активность А задается в виде:

где – ожидаемое число спонтанных ядерных превращений (число распадов ядер), происходящих в источнике ионизирующего излучения за интервал времени .

Самопроизвольное ядерное превращение называют радиоактивным распадом .

Единицей измерения активности радионуклидов является обратная секунда (), имеющая специальное название беккерель (Бк) .

Беккерель равен активности радионуклида в источнике, в котором за время 1 сек. происходит одно спонтанное ядерное превращение.

Внесистемная единица активности – кюри (Ku) .

Кюри – активность радионуклида в источнике, в котором за время 1 сек. происходит 3,7 . 10 10 спонтанных ядерных превращений, т. е. 1 Ku = 3,7 . 10 10 Бк.

Например, примерно 1 г чистого радия дает активность 3,7 . 10 10 ядерных распадов в секунду.

Не все ядра радионуклида распадаются одновременно. В каждую единицу времени самопроизвольное ядерное превращение происходит с определенной долей ядер. Доля ядерных превращений для разных радионуклидов различна. Например, из общего числа ядер радия ежесекундно распадается 1,38 . часть, а из общего количества ядер радона – 2,1 . часть. Доля ядер, распадающихся в единицу времени, называется постоянной распада λ.

Из приведенных определений следует, что активность А связана с числом радиоактивных атомов N в источнике в данный момент времени соотношением:

С течением времени число радиоактивных атомов уменьшается по закону:

, (3) – 30 лет, радона поверхностной или линейной активностью.

Выбор единиц удельной активности определяется конкретной задачей. Например, активность в воздухе выражают в беккерелях на кубический метр (Бк/м 3) – объемная активность. Активность в воде, молоке и других жидкостях также выражается как объемная активность, так как количество воды и молока измеряется в литрах (Бк/л). Активность в хлебе, картофеле, мясе и других продуктах выражается как удельная активность (Бк/кг).

Очевидно, что биологический эффект воздействия радионуклидов на организм человека будет зависеть от их активности, т. е. от количества радионуклида. Поэтому объемная и удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных и других материалах нормируются.

Поскольку в течение определенного времени человек может облучаться различными путями (от поступления радионуклидов в организм до внешнего облучения), то все факторы облучения связывают определенной величиной, которая называется дозой облучения.

Рис.18.4

2. Спонтанное(самопроизвольное) излучение возбужденных атомов при переходе с верхнего энергетического уровня с энергией Е 2 на нижний уровень с энергией Е 1 . Частота испущенного кванта n такая же, как частота поглощенного при возбуждении кванта, но направление распространения и фаза колебаний излучения произвольны.

3. Вынужденное излучение атомов при переходе возбужденных атомов в исходное состояние под действием падающего электромагнитного излучения. С квантовой точки зрения новый квант вынужденного излучения ничем не отличается от кванта, стимулировавшего его появление. Вынужденное излучение строго когерентно с вызвавшим его излучением, интенсивность результирующей электромагнитной волны увеличивается. Следует отметить, что вероятность переходов 1 и 3 одинакова, поэтому преобладание поглощения или вынужденного излучения определяется соотношением числа атомов среды N 1 и N 2 в состояниях с энергией Е 1 и Е 2 .

В условиях термодинамического равновесия, которое чаще всего и реализуется в веществе, населенность N 1 нижнего уровня всегда больше населенности N 2 верхнего уровня. Поэтому электромагнитная волна теряет больше энергии, чем приобретает, интенсивность излучения уменьшается.

Однако в некоторых случаях можно создать такие условия, когда возникает, так называемая, инверсная населенность уровней (N 2 > N 1), среда с такой населенностью называется активной . В такой среде вынужденные переходы (Е 2 ® Е 1) происходят чаще, чем возбуждение атомов, интенсивность излучения возрастает. Для того чтобы обеспечить инверсную населенность в активной среде, необходимо устройство для возбуждения среды, устройство, которое поставляет энергию для возбуждения атомов среды.

Двух уровней энергии для работы лазера недостаточно. В условиях равновесия N 1 > N 2 .

Обычно в лазерах используется так называемая трехуровневая система создания активной среды (рис.18.5). Атомы среды возбуждаются каким либо воздействием и переходят из основного состояния с энергией Е 1 в возбужденное состояние с энергией Е 3 . На уровне 3 атом живет очень мало, порядка 10 -8 с, после чего самопроизвольно переходит в состояние 2 без излучения света (энергия при этом передается другим атомам среды). Время жизни в состоянии 2 гораздо больше, порядка 10 -3 с, и в этом возбужденном состоянии накапливается большое количество атомов среды. Создается среда с инверсной населенностью уровней 2 и 1. Каждый фотон, случайно родившийся при переходе 2®1, движется в активной среде и может порождать множество вынужденных переходов 2®1, в результате чего возникает лавина вторичных фотонов, являющихся копиями первичного фотона.


Первым лазером (от первых букв английского названия Light Amplification by Stimulated Emission of Radiation), работающим в видимой области спектра (длина волны излучения 0,69мкм) был рубиновый лазер (Т. Мейман, 1960г). Рубин – это красный кристалл оксида алюминия Al 2 O 3 с примесью атомов хрома (около 0,05%). Именно ионы хрома в кристалле рубина имеют три уровня энергии, обладающие необходимыми свойствами для создания инверсной населенност

А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что более чем в 10 тысяч раз меньше размеров самого атома.

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом. Количество протонов в ядре называется его зарядовым числом - это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами.

В 1911 году Резерфорд в своём докладе «Рассеяние α- и β-лучей и строение атома» в философском обществе Манчестера заявил :

Рассеяние заряженных частиц может быть объяснено, если предположить такой атом, который состоит из центрального электрического заряда, сосредоточенного в точке и окружённого однородным сферическим распределением противоположного электричества равной величины. При таком устройстве атома α- и β-частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала.

Таким образом Резерфорд открыл атомное ядро, с этого момента и ведёт начало ядерная физика, изучающая строение и свойства атомных ядер.

После обнаружения стабильных изотопов элементов, ядру самого лёгкого атома была отведена роль структурной частицы всех ядер. С 1920 года ядро атома водорода имеет официальный термин -протон. После промежуточной протон-электронной теории строения ядра, имевшей немало явных недостатков, в первую очередь она противоречила экспериментальным результатам измерений спинов и магнитных моментов ядер, в 1932 году Джеймсом Чедвиком была открыта новая электрически нейтральная частица, названная нейтроном. В том же году Иваненко и, независимо, Гейзенберг выдвинули гипотезу о протон-нейтронной структуре ядра. В дальнейшем, с развитием ядерной физики и её приложений, эта гипотеза была полностью подтверждена.



Радиоактивность

Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») - спонтанное изменение состава (заряда Z, массового числа A) или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов. Процесс радиоактивного распада также называют радиоактивностью, а соответствующие ядра (нуклиды, изотопы и химические элементы) радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Закон радиоактивного распада - закон, открытый Фредериком Содди и Эрнестом Резерфордом экспериментальным путём и сформулированный в 1903 году. Современная формулировка закона:

что означает, что число распадов за интервал времени t в произвольном веществе пропорционально числу N имеющихся в образце радиоактивных атомов данного типа.

В этом математическом выражении λ - постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеет размерность с −1 . Знак минус указывает на убыль числа радиоактивных ядер со временем. Закон выражает независимость распада радиоактивных ядер друг от друга и от времени: вероятность распада данного ядра в каждую следующую единицу времени не зависит от времени, прошедшего с начала эксперимента, и от количества ядер, оставшихся в образце.

Решение этого дифференциального уравнения имеет вид:

Или , где Т - период полураспада равный времени, в течение которого число радиоактивных атомов или активность образца уменьшаются в 2 раза.

12. Ядерные реакции.

Ядерная реакция - это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра. Последствием взаимодействия может стать деление ядра, испускание элементарных частиц или фотонов. Кинетическая энергия вновь образованных частиц может быть гораздо выше первоначальной, при этом говорят о выделении энергии ядерной реакцией.

Виды ядерных реакций

Ядерная реакция деления - процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном, альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер - экзоэнергетический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.

Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

Ядерная реакция синтеза - процесс слияния двух атомных ядер с образованием нового, более тяжелого ядра.

Кроме нового ядра, в ходе реакции синтеза, как правило, образуются также различные элементарные частицы и (или) кванты электромагнитного излучения.

Без подвода внешней энергии слияние ядер невозможно, так как положительно заряженные ядра испытывают силы электростатического отталкивания - это так называемый «кулоновский барьер». Для синтеза ядер необходимо сблизить их на расстояние порядка 10 −15 м, на котором действие сильного взаимодействия будет превышать силы электростатического отталкивания. Это возможно в случае, если кинетическая энергия сближающихся ядер превышает кулоновский барьер.

Фотоядерная реакция

При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром. Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном, нейтронов.

Запись ядерных реакций

способ написания формул ядерных реакций аналогичен записи формул реакций химических, то есть слева записывается сумма исходных частиц, справа - сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.

Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:

Мы видим, что число протонов и нейтронов справа и слева остаётся одинаковым (барионное число сохраняется). Это же относится к электрическим зарядам, лептонным числам и другим величинам (энергия, импульс, момент импульса, …). В некоторых реакциях, где участвует слабое взаимодействие, протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами ).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения α -частиц через вещество. Оказалось, что почти вся масса атома (99,95%) сосредоточена в ядре. Размер атомного ядра имеет порядок величины 10 -1 3 -10 - 12 см, что в 10 000 раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода , выбитых α -частицами из ядер других элементов (1919-1920 гг.), привели уче-ного к представлению о протоне . Термин протон был введен в начале 20-х гг XX ст.

Протон (от греч. protons — первый, символ p ) — стабильная элементарная частица, ядро ато-ма водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона e = 1,6 · 10 -1 9 Кл. Масса протона в 1836 раз больше массы электрона. Масса покоя протона m р = 1,6726231 · 10 -27 кг = 1,007276470 а.е.м.

Второй частицей, входящей в состав ядра, является нейтрон .

Нейтрон (от лат. neuter — ни тот, ви другой, символ n ) — это эле-ментарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в 1839 раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона m n = 1,6749286 · 10 -27 кг = 1,0008664902 а.е.м. и превосходит массу протона па 2,5 массы электрона. Нейтрон, наря-ду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия α -частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало пре-граду из свинцовой пластины толщиной 10-20 см) усиливало свое действие при прохождении через парафиновую пластину (см. рисунок). Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это γ -кванты. Большая проникающая способность новых частиц, названных ней-тронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании α -частиц в ядра бериллия происходит следующая реакция:

Здесь — символ нейтрона; заряд его равен нулю, а относительная атомная масса прибли-зительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время ~ 15 мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протонно-нейтронную (нуклонную) модель ядра . Согласно этой моде-ли, ядро состоит из протонов и нейтронов. Число протонов Z совпадает с порядковым номером элемента в таблице Д. И. Менделеева .

Заряд ядра Q определяется числом протонов Z , входящих в состав ядра, и кратен абсолютной величине заряда электрона e :

Q = +Ze.

Число Z называется зарядовым числом ядра или атомным номером .

Массовым числом ядра А называется общее число нуклонов, т. е. протонов и нейтронов, содер-жащихся в нем. Число нейтронов в ядре обозначается буквой N . Таким образом, массовое число равно:

А = Z + N.

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов .

Изотопы (от греч. isos — равный, одинаковый и topoa — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число прото-нов (Z ) и различное число нейтронов (N ).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного эле-мента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами Z и N . Общее обозначение нуклидов имеет вид ……. где X — символ химического эле-мента, A = Z + N — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и про-изошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (b почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемен-та определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1 Н протий , 2 Н дейтерий , 3 Н тритий столь сильно отличаются по массе, что и их физические и хими-ческие свойства различны. Дейтерий стабилен (т.е. не радиоактивен) и входит в качестве неболь-шой примеси (1: 4500) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода . Она при нормальном атмосферном давлении кипит при 101,2 °С и замерзает при +3,8 ºС. Тритий β -радиоактивен с периодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактив-ные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами 235 и 238. Изотоп составляет всего 1/140 часть от более распространенного .

Академик А. Ф. ИОФФЕ. "Наука и жизнь" № 1, 1934 г.

Статьей "Ядро атома" академика Абрама Федоровича Иоффе открывался первый номер журнала "Наука и жизнь", вновь созданного в 1934 году.

Э. Резерфорд.

Ф. У. Астон.

ВОЛНОВАЯ ПРИРОДА МАТЕРИИ

В начале XX века атомистическое строение материи перестало быть гипотезой, и атом сделался такой же реальностью, как реальны обычные для нac факты и явления.

Выяснилось, что атом есть очень сложное образование, в состав которого, несомненно, входят электрические заряды, а может быть, и только одни электрические заряды. Отсюда, естественно, возник вопрос о структуре атома.

Первая модель атома была построена по образцу Солнечной системы. Однако такое представление о структуре атома вскоре оказалось несостоятельным. И это естественно. Представление об атоме как о Солнечной системе было чисто механическим перенесением картины, связанной с астрономическими масштабами, в область атома, где масштабы - только стомиллионные доли сантиметра. Столь резкое количественное изменение не могло не повлечь за собой и очень существенного изменения качественных свойств тех же явлений. Это различие прежде всего сказалось в том, что атом, в отличие от Солнечной системы, должен быть построен по гораздо более жестким правилам, чем те законы, которые определяют орбиты планет Солнечной системы.

Возникло два затруднения. Во-первых, все атомы данного рода, данного элемента по своим физическим свойствам совершенно одинаковы, а следовательно, совершенно одинаковы должны быть орбиты электронов в этих атомах. Между тем законы механики, управляющие движением небесных тел, для этого не дают решительно никаких оснований. В зависимости от начальной скорости орбита планеты может быть, по этим законам, совершенно произвольна, планета может вращаться каждый раз с соответственной скоростью по любой орбите, на любых расстояниях от Солнца. Если бы такие же произвольные орбиты существовали в атомах, то атомы одинакового вещества не могли бы быть настолько совпадающими по своим свойствам, например, давать строго одинаковый спектр свечения. Это одно противоречие.

Другое - заключалось в том, что движение электрона вокруг атомного ядра, если к нему применить законы, хорошо нами изученные в большом масштабе лабораторных опытов или даже астрономических явлений, должно было бы сопровождаться непрерывным излучением энергии. Следовательно, энергия атома должна была бы непрерывно истощаться, и опять-таки атом не мог бы сохранить одинаковыми и неизменными свои свойства на протяжении столетий и тысячелетий, а весь мир и все атомы должны были бы испытывать непрерывное затухание, непрерывную потерю заключающейся в них энергии. Это тоже никак несовместимо с основными свойствами атомов.

Последнее затруднение ощущалось особенно остро. Казалось, оно завело всю науку в неразрешимый тупик.

Крупнейший физик Лоренц закончил нашу беседу по этому поводу так: "Я жалею, что не умер пять лет назад, когда этого противоречия еще не было. Тогда я умер бы в убеждении, что я раскрыл часть истины в явлениях природы".

В это же время, весной 1924 года, де-Бройль, молодой ученик Ланжевена, в своей диссертации выразил мысль, которая в дальнейшем своем развитии привела к новому синтезу.

Идея де-Бройля, потом довольно существенно измененная, но до сих пор в основном сохранившаяся, заключалась в том, что движение электрона, вращающегося вокруг ядра в атоме, не есть просто движение некоего шарика, как это представляли себе раньше, что это движение сопровождается некоторой волной, идущей вместе с движущимся электроном. Электрон - не шарик, а некоторая размытая в пространстве электрическая субстанция, движение которой представляет собой в то же время распространение волны.

Это представление, затем распространенное не только на электроны, но и на движение всякого тела - и электрона, и атома, и целой совокупности атомов, - утверждает, что всякое движение тела заключает в себе две стороны, из которых мы в отдельных случаях можем видеть особенно отчетливо одну сторону, тогда как другая заметно не проявляется. В одном случае мы видим как бы распространяющиеся волны и не замечаем движения частиц, в другом случае, наоборот, на первый план выступают сами движущиеся частицы, а волна ускользает от нашего наблюдения.

Но на самом деле всегда обе эти стороны имеются, и, в частности, в движении электронов имеется не только перемещение самих зарядов, но и распространение волны.

Нельзя сказать, что движения электронов по орбитам нет, а есть только пульсация, только волны, т. е. нечто другое. Нет, правильнее было бы сказать так: того движения электродов, которое мы уподобляли движению планет вокруг Солнца, мы вовсе не отрицаем, но самое это движение имеет характер пульсации , а не характер движения земного шара вокруг Солнца.

Я не стану здесь излагать строение атома, строение той электронной его оболочки, которая определяет все основные физические свойства - сцепление, упругость, капиллярность, химические свойства и т. п. Все это - результат движения электронной оболочки, или, как мы теперь скажем, пульсации атома.

ПРОБЛЕМА АТОМНОГО ЯДРА

Ядро играет в атоме самую существенную роль. Это - тот центр, вокруг которого вращаются все электроны и свойствами которого в конечном счете обусловливается все остальное.

Первое, что мы могли узнать о ядре, - это его заряд. Мы знаем, что в состав атома входит некоторое число отрицательно заряженных электронов, но атом в целом не обладает электрическим зарядом. Значит, где-то должны быть соответствующие положительные заряды. Эти положительные заряды сосредоточены в ядре. Ядро - положительно заряженная частица, вокруг которой пульсирует электронная атмосфера, окружающая ядро. Заряд ядра определяет собой и число электронов.

Электроны железа и меди, стекла и дерева совершенно одинаковы. Для атома никакой беды не составляет потерять несколько своих электронов или даже потерять все свои электроны. Пока остается положительно заряженное ядро, это ядро притянет к себе из других окружающих тел столько электронов, сколько ему нужно, и атом сохранится. Атом железа до тех пор останется железом, пока цело его ядро. Если он потеряет несколько электронов, то положительный заряд ядра окажется больше, чем совокупность оставшихся отрицательных зарядов, и весь атом в целом приобретет избыточный положительный заряд. Тогда мы его называем не атомом, а положительным ионом железа. В другом случае атом может, наоборот, привлечь к себе больше отрицательных электронов, чем в нем имеется положительных зарядов, - тогда он будет заряжен отрицательно, и мы называем его отрицательным ионом; это будет отрицательный ион того же элемента. Следовательно, индивидуальность элемента, все его свойства существуют и определяются ядром, зарядом этого ядра прежде всего.

Далее, - масса атома в подавляющей своей части определяется именно ядром, а не электрона ми, - масса электронов составляет меньше одной тысячной массы всего атома; больше чем 0,999 всей массы - это масса ядра. Это имеет тем большее значение, что массу мы считаем мерой того запаса энергии, которым обладает данное вещество; масса - такая же мера энергии , как эрг, киловатт-час или калория .

Сложность ядра обнаружилась в явлении радиоактивности, открытом, вскоре за рентгеновыми лучами, на грани нашего столетия. Известно, что радиоактивные элементы непрерывно излучают энергию в виде альфа-, бета- и гамма-лучей. Но такое непрерывное излучение энергии должно иметь какой-то источник. В 1902 г. Резерфорд показал, что единственным источником этой энергии должен быть атом, иначе сказать, ядерная энергия. Другая сторона радиоактивности заключается в том, что испускание этих лучей переводит один элемент, находящийся в одном месте периодической системы, в другой элемент с другими химическими свойствами. Иными словами, радиоактивные процессы осуществляют превращение элементов. Если верно, что ядром атома определяется его индивидуальность и что, пока ядро цело, до тех пор и атом остается атомом данного элемента, а не какого-нибудь другого, то переход одного элемента в другой означает изменение самого ядра атома.

Выбрасываемые радиоактивными веществами лучи дают первый подход, позволяющий составить себе некоторое общее представление о том, что заключено в ядре.

Альфа-лучи представляют собой ядра гелия, а гелий - второй элемент периодической системы. Можно думать поэтому, что в состав ядра входят ядра гелия. Но измерение скоростей, с которыми вылетают альфа-лучи, приводит сразу же к очень серьезному затруднению.

ТЕОРИЯ РАДИОАКТИВНОСТИ ГАМОВА

Ядро заряжено положительно. При приближении к нему всякая заряженная частица испытывает силу притяжения или отталкивания. В больших масштабах лабораторий взаимодействия электрических зарядов определяются законом Кулона: два заряда взаимодействуют друг с другом с силой, обратно пропорциональной квадрату расстояния между ними и прямо пропорциональной величине одного и другого зарядов. Изучая законы притяжения или отталкивания, которые испытывают частицы, приближаясь к ядру, Резерфорд установил, что вплоть до очень близких к ядру расстояний, порядка 10 -12 см, еще справедлив тот же закон Кулона. Если это так, то мы легко можем подсчитать, какую работу должно произвести ядро, отталкивая от себя положительный заряд, когда он выходит из ядра и выбрасывается наружу. Альфа-частицы и заряженные ядра гелия, вылетая из ядра, движутся под отталкивающим действием его заряда; и вот соответствующий подсчет дает, что под действием одного только отталкивания альфа-частицы должны были накопить кинетическую энергию, соответствующую, по крайней мере, 10 или 20 млн. электронвольт, т. е. энергию, которая получается при прохождении зарядом, равным заряду электрона, разности потенциалов в 20 млн. вольт . А на самом деле, вылетая из атома, они выходят с энергией, гораздо меньшей, всего в 1-5 млн. электронвольт. А ведь, кроме того,

естественно было ожидать, что и ядро, выбрасывая альфа-частицу, еще что-то дает ей в придачу. В момент выбрасывания в ядре происходит что-то вроде взрыва, и самый этот взрыв сообщает какую-то энергию; к этому прибавляется работа сил отталкивания, а оказывается, что сумма этих энергий меньше того, что должно дать одно отталкивание. Это противоречие снимается, как только мы откажемся от механического перенесения в эту область взглядов, выработанных на опыте изучения больших тел, где мы не принимаем во внимание волнового характера движения. Г. А. Гамов первый дал правильное толкование этому противоречию и создал волновую теорию ядра и радиоактивных процессов.

Известно, что на достаточно больших расстояниях (больше 10 -12 см) ядро отталкивает от себя положительный заряд. С другой стороны, несомненно, что внутри самого ядра, в котором находится много положительных зарядов, они почему-то не отталкиваются. Самое существование ядра показывает, что положительные заряды внутри ядра взаимно притягивают друг друга, а вне ядра - от него отталкиваются.

Как же можно описать энергетические условия в самом ядре и вокруг него? Гамов создал следующее представление. Будем изображать на диаграмме (рис. 5) величину энергии положительного заряда в данном месте расстоянием от горизонтальной прямой А .

По мере приближения к ядру энергия заряда будет возрастать, потому что будет совершаться работа против силы отталкивания. Внутри ядра, наоборот, энергия должна снова уменьшиться, потому что здесь существует не взаимное отталкивание, а взаимное притяжение. На границах ядра происходит резкое спадание величины энергии. Наш рисунок изображен на плоскости; на самом деле нужно, конечно, представить себе его в пространстве с таким же распределением энергии и по всем другим направлениям. Тогда мы получаем, что вокруг ядра имеется шарообразный слой с высокой энергией, как бы некоторый энергетический барьер, защищающий ядро от проникновения положительных зарядов, так называемый "барьер Гамова".

Если стоять на точке зрения привычных взглядов на движение тела и забыть о волновой его природе, то нужно ожидать, что в ядро может пробраться только такой положительный заряд, энергия которого не меньше высоты барьера. Наоборот, для того, чтобы выйти из ядра, заряду нужно сначала достигнуть вершины барьера, после чего его кинетическая энергия начнет возрастать по мере удаления от ядра. Если на вершине барьера энергия была равна нулю, то при удалении из атома она и получит те самые 20 млн. электронвольт, которые на самом деле никогда не наблюдаются. Новое понимание ядра, которое внес Гамов, заключается в следующем. Движение частицы нужно рассматривать как волновое. Следовательно, на этом движении сказывается энергия не только в занимаемой частицей точке, но и во всей размытой волне частицы, охватывающей довольно значительное пространство. Исходя из представлений волновой механики, мы можем утверждать, что, если даже энергия в данной точке не достигла того предела, который соответствует вершине барьера, частица может оказаться по другую его сторону, где ее уже не втягивают в ядро действующие там силы притяжения.

Нечто аналогичное представляет следующий опыт. Представьте себе, что за стеной комнаты находится бочка с водой. От этой бочки проведена труба, которая проходит высоко наверху через отверстие, в стене и подает воду; внизу вода выливается. Это - хорошо известное устройство, называемое сифоном. Если бочка с той стороны поставлена выше, чем конец трубы, то через нее будет непрерывно вытекать вода со скоростью, определяемой разностью уровня воды в бочке и конца трубы. Ничего удивительного здесь нет. Но если бы вы не знали о существовании бочки по ту сторону стены и видели только трубу, по которой течет вода с большой высоты, то для вас этот факт казался бы непримиримым противоречием. Вода течет с большой высоты и в то же время не накапливает той энергии, которая соответствует высоте трубы. Однако объяснение в данном случае очевидно.

Аналогичное явление мы имеем в ядре. Заряд из своего нормального положения А поднимается в состояние большей энергии В , но вовсе не достигает вершины барьера С (рис. 6).

Из состояния В альфа-частица, проходя сквозь барьер, начинает отталкиваться от ядра не с самой вершины С , а с меньшей высоты энергии B 1 . Поэтому при выходе наружу накопленная частицей энергия будет зависеть не от высоты С , а от меньшей высоты, равной B 1 (рис. 7).

Это качественное рассуждение можно облечь и в количественную форму и дать закон, определяю щий вероятность прохождения барьера альфа-частицей в зависимости от той энергии В , которой она обладает в ядре, а следовательно, и от той энергии, которую она получит при выходе из атома.

При помощи ряда опытов был установлен очень простой закон, связывавший числа выбрасываемых радиоактивными веществами альфа-частиц с их энергией или скоростью. Но смысл этого закона был совершенно непонятен.

Первый успех Гамова заключался в том, что из его теории совершенно точно и непринужденно вытекал этот количественный закон испускания альфа-частиц. Сейчас "энергетический барьер Гамова" и волновое его толкование являются основой всех наших представлений о ядре.

Свойства альфа-лучей качественно и количественно хорошо объясняются теорией Гамова, но известно, что радиоактивные вещества испускают и бета-лучи - потоки быстрых электронов. Испускания электронов модель не в состоянии объяснить. Это - одно из самых серьезных противоречий теории атомного ядра, которое до самого последнего времени осталось неразрешенным, но решение которого теперь, по-видимому, намечается .

СТРОЕНИЕ ЯДРА

Перейдем теперь к рассмотрению того, что мы знаем о строении ядра.

Больше 100 лет назад Проутом была высказана мысль, что, может быть, элементы периодической системы вовсе не являются отдельными, ничем между собой не связанными формами материи, а представляют собой только разные комбинации атома водорода. Если бы это было так, то можно было бы ожидать, что не только заряды всех ядер будут представлять собою целые кратные заряда водорода, но и массы всех ядер будут выражаться целыми кратными массы ядра водорода, т. е. все атомные веса должны были бы выражаться целыми числами. И действительно, если посмотреть на таблицу атомных весов, то можно увидеть большое число целых чисел . Например, углерод - ровно 12, азот ровно 14, кислород - ровно 16, фтор - ровно 19. Это, конечно, не случайность. Но есть все-таки атомные веса, далекие от целых чисел. Например, неон имеет атомный вес 20,2, хлор - 35,46. Поэтому гипотеза Проута осталась частичной догадкой и не могла сделаться теорией строения атома. Изучая поведение заряженных ионов, особенно легко можно изучать свойства ядра атома, воздействуя на них, например, электрическим и магнитным полем.

Основанный на этом метод, доведенный до чрезвычайно большой точности Астоном, позволил установить, что все элементы, атомные веса которых не выражались целыми числами, на самом деле представляют собой не однородное вещество, а смесь двух или нескольких - 3, 4, 9 - разных видов атомов. Так, например, атомный вес хлора, равный 35,46, объясняется тем, что на самом деле имеется несколько сортов хлорных атомов. Существуют атомы хлора с атомным весом 35 и 37, и эти два вида хлора смешаны между собой в такой пропорции, что их средний атомный вес получается 35,46. Оказалось, что не только в одном этом частном случае, но и во всех без исключения случаях, где атомные веса не выражаются целыми числами, мы имеем смесь изотопов, т. е. атомов с одинаковым зарядом, следовательно, представляющих собой один и тот же элемент, но с различными массами. Каждый же отдельный сорт атомов всегда имеет целый атомный вес.

Таким образом, гипотеза Проута получила сразу значительное подкрепление, и вопрос можно было бы считать решенным, если бы не одно исключение, а именно, сам водород. Дело в том, что наша система атомных весов построена не на водороде, принятом за единицу, а на атомном весе кислорода, который условно принят равным 16. По отношению к этому весу атомные веса выражаются почти точными целыми числами. Но сам водород в этой системе имеет атомный вес не единицу, а несколько больше, именно 1,0078. Это число отличается от единицы довольно значительно- на 3 / 4 %, что далеко превосходит все возможные ошибки в определении атомного веса.

Оказалось, что и у кислорода имеется 3 изотопа: кроме преобладающего, с атомным весом 16, другой - с атомным весом 17 и третий - с атомным весом 18 . Если относить все атомные веса к изотопу 16, то атомный вес водорода все-таки окажется немного больше единицы. Далее был найден второй изотоп водорода - водород с атомным весом 2 - дейтерий, как его назвали открывшие его американцы, или диплоген, как его называют англичане. Этого дейтерия примешано всего примерно 1/6000 часть, и поэтому на атомном весе водорода присутствие этой примеси сказывается очень мало.

Следующий за водородом гелий имеет атомный вес 4,002. Если бы он был составлен из 4 водородов, то атомный вес его должен был бы быть, очевидно, 4,031. Следовательно, в этом случае мы имеем некоторую потерю в атомном весе, а именно: 4,031 - 4,002 = 0,029. Возможно ли это? Пока мы не считали массу некоторой мерой материи, конечно, это было невозможно: это значило бы, что часть материи исчезла.

Но теория относительности установила с несомненностью, что масса не есть мера количества материи , а мера той энергии, которой эта материя обладает. Материя измеряется не массой, а количеством зарядов, составляющих эту материю. Эти заряды могут иметь большую или меньшую энергию. Когда одинаковые заряды сближаются - энергия увеличивается, когда они удаляются - энергия уменьшается. Но это, конечно, не значит, что изменилась материя.

Когда мы говорим, что при образовании гелия из 4 водородов исчезло 0,029 атомного веса, то это значит, что исчезла соответствующая этой величине энергия. Мы знаем, что каждый грамм вещества обладает энергией, равной 9 . 10 20 эрг. При образовании 4 г гелия теряется энергия, равная 0,029 . 9 . 10 20 эргам. За счет этого уменьшения энергии 4 ядра водорода соединятся в новое ядро. Лишняя энергия выделится в окружающее пространство, и останется соединение с несколько меньшей энергией и массой. Таким образом, если атомные веса измеряются не точно, целыми числами 4 или 1, а 4,002 и 1,0078, то именно эти тысячные доли приобретают особенное значение, потому что они определяют энергию, выделяющуюся при образовании ядра.

Чем больше выделяется энергии при образовании ядра, т. е. чем больше при этом потеря в атомном весе, тем прочнее ядро. В частности, ядро гелия очень прочно, потому что при его образовании выделяется энергия, соответствующая потере в атомном весе - 0,029. Это очень большая энергия. Чтобы судить о ней, лучше всего запомнить такое простое соотношение: одна тысячная атомного веса соответствует примерно 1 млн электронвольт. Так что 0,029 это примерно 29 млн. электронвольт. Для того чтобы разрушить ядро гелия, чтобы разложить его обратно на 4 водорода, нужна колоссальная энергия. Ядро такой энергии не получает, поэтому ядро гелия чрезвычайно устойчиво, и поэтому-то именно из радиоактивных ядер выделяются не ядра водорода, а целые ядра гелия, альфа-частицы. Эти соображения приводят нас к новой оценке атомной энергии. Мы уже знаем, что в ядре сосредоточена почти вся энергия атома, и притом энергия громадная. 1 г вещества имеет, если перевести на более наглядный язык, столько энергии, сколько можно получить от сжигания 10 поездов по 100 вагонов нефти. Следовательно, ядро - совершенно исключительный источник энергии. Сравните 1 г с 10 поездами - таково соотношение концентрации энергии в ядре по сравнению с энергией, которой мы пользуемся в нашей технике.

Однако, если вдуматься в те факты, которые мы сейчас рассматриваем, то можно, наоборот, придти к совершенно противоположному взгляду на ядро. Ядро с этой точки зрения является не источником энергии, а ее кладбищем: ядро - это остаток после выделения громадного количества энергии, и в нем мы имеем самое низкое состояние энергия.

Следовательно, если мы можем говорить о возможности использования энергии ядра, то только в том смысле, что, может быть, не все ядра дошли до предельно низкой энергии: ведь и водород и гелий - оба существуют в природе, и, следовательно, не весь водород соединился в гелий, хотя гелий и обладает меньшей энергией. Если бы мы могли имеющийся водород сплотить в гелий, то получили бы известное количество энергии. Это не 10 поездов с нефтью, но все-таки это будет примерно 10 вагонов с нефтью. И это не так уж плохо, если бы можно было из 1 г вещества получить столько энергии, сколько от сжигания 10 вагонов нефти.

Таковы возможные запасы энергии при перестройке ядер. Но возможность, конечно, еще далеко не реальность .

Каким же образом можно реализовать эти возможности? Для того, чтобы оценить их, перейдем к рассмотрению состава атомного ядра.

Мы можем теперь сказать, что во всех ядрах имеются положительные ядра водорода, которые называются протонами, обладают единицей атомного веса (точнее 1,0078) и единичным положительным зарядом. Но ядро не может состоять из одних протонов. Возьмем, например, самый тяжелый элемент, занимающий 92-е место в периодической таблице, - уран с атомным весом 238. Если предположить, что все эти 238 единиц составлены из протонов, то уран имел бы 238 зарядов, между тем он имеет всего 92. Следовательно, либо там не все частицы заряжены, либо там кроме 238 протонов имеются 146 отрицательных электронов. Тогда все благополучно: атомный вес был бы 238, положительных зарядов 238 и отрицательных 146, следовательно, суммарный заряд 92. Но мы уже установили, что предположение о наличии в ядре электронов несовместимо с нашими представлениями: ни по размерам, ни по магнитным свойствам электронов в ядро поместить нельзя. Оставалось какое-то противоречие.

ОТКРЫТИЕ НЕЙТРОНА

Это противоречие было уничтожено новым опытным фактом, который примерно два года тому назад был открыт Иреной Кюри и мужем ее Жолио (Ирена Кюри - дочь Марии Кюри, открывшей радий) . Ирена Кюри и Жолио открыли, что при бомбардировке бериллия (четвертого элемента периодической системы) альфа-частицами бериллий испускает какие-то странные лучи, проникающие через громадные толщи вещества. Казалось бы, paз они так легко проникают сквозь вещества, они не должны вызывать там сколько-нибудь значительных действий, иначе их энергия истощилась бы и они не проникали бы сквозь вещество. С другой стороны, оказывается, что эти лучи, столкнувшись с ядром какого- нибудь атома, отбрасывают его с громадной силой, как бы ударом тяжелой частицы. Так что, с одной стороны, нужно думать, что эти лучи - тяжелые ядра, а с другой стороны, они способны проходить громадные толщи, не оказывая никакого влияния.

Разрешение этого противоречия найдено было в том, что эта частица не заряжена. Если у частицы нет электрического заряда, то тогда на нее ничто не будет действовать, и сама она ни на что не будет действовать. Только тогда, когда она при своем движении наскочит где-нибудь на ядро, она его отбрасывает.

Таким образом, появились новые незаряженные частицы - нейтроны. Оказалось, что масса этой частицы примерно такая же, как масса частицы водорода - 1,0065 (на одну тысячную меньше протона, стало быть, энергия ее примерно на 1 млн электронвольт меньше). Эта частица похожа на протон, но только лишена положительного заряда, она нейтральна, ее назвали нейтроном.

Как только выяснилось существование нейтронов, было предложено совершенно иное представление о строении ядра. Оно было впервые высказано Д. Д. Иваненко, а затем развито, в особенности Гайзенбергом, получившим Нобелевскую премию прошлого года. В ядре могут находиться протоны и нейтроны. Можно было предположить, что ядро и составлено только из протонов и нейтронов. Тогда совсем по-другому, но совсем просто представляется все построение периодической системы. Как, например, надо себе представить уран? Его атомный вес 238, т. е. там 238 частичек. Но часть из них протоны, часть нейтроны. Каждый протон имеет положительный заряд, нейтроны совсем не имеют заряда. Если заряд урана - 92, то это значит, что 92 - протона, а все остальное - нейтроны. Это представление уже сейчас привело к ряду весьма замечательных успехов, сразу разъяснило целый ряд свойств периодической системы, которые раньше представлялись совершенно загадочными. Когда протонов и нейтронов немного, то, по современным представлениям волновой механики, нужно ожидать, что число протонов и нейтронов в ядре одинаково. Зарядом обладает только протон, и число протонов дает атомный номер. А атомный вес элемента - это сумма весов протонов и нейтронов, потому что и те и другие имеют по единице атомного веса. На этом основании можно сказать, что атомный номер - это половина атомного веса.

Теперь остается все-таки одно затруднение, одно противоречие. Это - противоречие, создаваемое бета-частицами.

ОТКРЫТИЕ ПОЗИТРОНА

Мы пришли к заключению, что в ядре нет ничего кроме положительно заряженного протона. А как же тогда выбрасываются из ядра отрицательные электроны, если там вообще никаких отрицательных зарядов нет? Как видите, мы попали в трудное положение.

Из него нас выводит опять-таки новый экспериментальный факт, новое открытие. Это открытие было сделано, пожалуй впервые, Д. В. Скобельцыным, который, давно уже изучая космические лучи, нашел, что среди зарядов, которые выбрасывают космические лучи, есть и положительные легкие частицы. Но это открытие настолько противоречило всему тому, что твердо было установлено, что Скобельцын сначала не придал своим наблюдениям такого толкования.

Следующим, кто открыл это явление, был американский физик Андерсен в Пасадене (Калифорния), а после него в Англии, в лаборатории Резерфорда, - Блэккет. Это - положительные электроны или, как их не очень удачно назвали, - позитроны. Что действительно это положительные электроны - можно проще всего видеть по их поведению в магнитном поле. В магнитном поле электроны отклоняются в одну сторону, а позитроны - в другую, и направление их отклонения определяет собою их знак.

Вначале позитроны наблюдались только при прохождении космических лучей. Совсем недавно те же Ирена Кюри и Жолио открыли новое замечательное явление. Оказалось, что существует новый тип радиоактивности, что ядра алюминия, бора, магния, сами по себе не радиоактивные, будучи бомбардированы альфа-лучами, становятся радиоактивными. В течение от 2 до 14 минут они продолжают сами собой испускать частицы, и эти частицы уже не альфа- и бета-лучи, а позитроны.

Теория позитронов была создана гораздо раньше, чем был найден сам позитрон. Дирак поставил себе задачу придать уравнениям волновой механики такую форму, чтобы они удовлетворяли и теории относительности.

Эти уравнения Дирака, однако, привели к очень странному следствию. Масса в них входит симметрично, т. е. при изменении знака массы на противоположный уравнения не изменяются. Эта симметрия уравнений относительно массы позволила Дираку предсказать возможность существования положительных электронов.

В то время никто положительных электронов не наблюдал, и существовала твердая уверенность, что положительных электронов нет (можно судить об этом по той осторожности, с которой подошли к данному вопросу и Скобельцын и Андерсен), поэтому теория Дирака была отвергнута. Спустя два года положительные электроны были на самом деле найдены, и, естественно, вспомнили о теории Дирака, предсказавшей их появление.

"МАТЕРИАЛИЗАЦИЯ" И "АННИГИЛЯЦИЯ"

Эта теория связана с целым рядом неосновательных толкований, которые обрастают ее со всех сторон. Мне хотелось бы здесь разобрать названный так по инициативе мадам Кюри процесс материализации - появление при прохождении гамма-лучей сквозь материю одновременно пары из положительного и отрицательного электрона . Этот опытный факт толкуют как превращение электромагнитной энергии в две частицы материи, которых раньше не существовало. Этот факт, следовательно, истолковывается как создание и исчезновение материи под влиянием тех иных лучей.

Но если ближе присмотреться к тому, что мы в действительности наблюдаем, то легко видеть, что такое толкование появления пар не имеет никаких оснований. В частности, в работе Скобельцына прекрасно видно, что появление пары зарядов под воздействием гамма-лучей происходит вовсе не в пустом пространстве, появление пар наблюдается всегда только в атомах. Следовательно, здесь мы имеем дело не с материализацией энергии, не с появлением какой-то новой материи, а только с разделением зарядов внутри той материи, которая уже существует в атоме. Где она находилась? Надо думать, что процесс расщепления положительного и отрицательного заряда происходит недалеко от ядра, внутри атома, но не внутри ядра (на сравнительно не очень большом расстоянии 10 -10 -10 -11 см, тогда как радиус ядра 10 -12 -10 -13 см).

Совершенно то же можно сказать и об обратном процессе "аннигиляции материи" - соединения отрицательного и положительного электрона с выделением одного миллиона электронвольт энергии в виде двух квантов электромагнитных гамма-лучей. И этот процесс происходит всегда в атоме, по-видимому вблизи его ядра.

Здесь мы подходим к возможности разрешения отмеченного уже нами противоречия, к которому приводит испускание бета-лучей отрицательных электронов ядром, которое, как мы думаем, электронов не содержит.

Очевидно, бета-частицы вылетают не из ядра, а благодаря ядру; благодаря выделению энергии внутри ядра около него происходит процесс расщепления на положительный и отрицательный заряды, причем отрицательный заряд выбрасывается, а положительный втягивается в ядро и связывается с нейтроном, образуя положительный протон. Таково предположение, которое высказывалось в последнее время.

Вот что мы знаем о составе атомного ядра.

ЗАКЛЮЧЕНИЕ

В заключение скажем несколько слов о дальнейших перспективах.

Если при изучении атомов мы дошли до некоторых границ, за которыми количественные изменения перешли в новые качественные свойства, то на границах атомного ядра перестают действовать и те законы волновой механики, которые мы обнаружили в атомной оболочке; в ядре начинают нащупываться очень еще неясные контуры новой, еще более обобщающей теории, по отношению к которой волновая механика представляет собой только одну сторону явления, другая сторона которого начинает сейчас открываться - и начинает, как всегда, с противоречий.

Работы над атомным ядром имеют и другую очень любопытную сторону, тесно переплетающу юся с развитием техники. Ядро очень хорошо защищено барьером Гамова от внешних воздействий. Если, не ограничиваясь только наблюдением распада ядер в радиоактивных процессах, мы захотели бы извне прорваться в ядро, перестроить его, то для этого потребовалось бы чрезвычай но мощное воздействие.

Задача о ядре самым настойчивым образом требует дальнейшего развития техники, перехода от тех напряжений, которые уже освоены высоковольтной техникой, от напряжений в несколько сотен тысяч вольт, к миллионам вольт. Создается новый этап и в технике. Это работа над созданием новых источников напряжения, в миллионы вольт, ведется сейчас во всех странах - и за границей и у нас, в частности в Харьковской лаборатории, которая первая начала эту работу, и в Ленинградском физико-техническом институте, и в других местах.

Проблема ядра - одна из самых актуальных проблем нашего времени в физике; над ней нужно с чрезвычайной интенсивностью и настойчивостью работать, и в этой работе необходимо обладать большой смелостью мысли. В своем изложении я указал несколько случаев, когда, переходя к новым масштабам, мы убеждались, что наши логические привычки, все наши представления, построенные на ограниченном опыте, не годятся для новых явлений и новых масштабов. Нужно преодолеть этот свойственный каждому из нас консерватизм здравого смысла. Здравый смысл - это концентрированный опыт прошлого; нельзя ожидать, что этот опыт полностью охватит и будущее. В области ядра больше, чем в какой-нибудь другой, приходится все время иметь в виду возможность новых качественных свойств и не бояться их. Мне кажется, что именно здесь должна сказаться мощь диалектического метода, лишенного этого консерватизма метода, предсказавшего и весь ход развития современной физики. Я, конечно, понимаю здесь под диалектическим методом не совокупность фраз, взятых из Энгельса. Не его слова, а их смысл нужно перенести в нашу работу; только один диалектический метод может нас продвинуть вперед в такой совершенно новой и передовой области, как проблема ядра.


© 2024
polyester.ru - Журнал для девушек и женщин