20.08.2023

Элементарная работа силы. Методические указания к выполнению практической работы на тему "работа и мощность при вращательном движении тела" Связи и их уравнения


Теорема об изменении кинетической энергии механической системы

Учебные вопросы:

1. Работа силы.

2. Кинетическая энергия точки и механической системы.

3.Теорема об изменении кинетической энергии точки.

4. Теорема об изменении кинетической энергии механической системы.

5. Потенциальное силовое поле и потенциальная энергия.

1. Работа силы.

Элементарная работа силы - это бесконечно малая ска­лярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы :

.

-приращение ра­диуса-вектора точки приложе­ния силы, годографом которого является траектория этой точки. Элементарное перемещение
точ­ки по траектории совпадает с
в силу их малости. Поэтому

Так как
- проекция силы на направление пе­ремещения точки (при криволинейной траектории - на каса­тельную оськ траектории, то

,

т. е. работу совершает только касательная сила, а работа нор­мальной силы равна нулю.

Если
то

если
то

если
то
.

Представим векторы и
через их проекции на оси де­картовых координат:

,

Работа силы на конечном перемещении равна инте­гральной сумме элементарных работ на этом перемещении

.

.

Если сила постоянная, а точка ее приложения перемещает­ся прямолинейно, то

.

Работа силы тяжести

где h - перемещение точки приложения силы по вертикали вниз (высота).

При перемещении точки приложения силы тяжести вверх
(точка
- внизу,
- вверху). Итак
,

.

Работа силы тяжести не зависит от формы траектории. При движении по замкнутой траектории (
совпадает с
) работа равна нулю.

Работа силы упругости пружины.

Пружина растягивается только вдоль оси х

,

где - величина деформации пружины. При перемещении точки приложения силы
из нижнего положения в верхнее направление силы и направление перемещения совпадают, тогда
.

Поэтому работа силы упругости

.

Работа сил, приложенных к твердому телу.

а) Работа внутренних сил

Для двух k - х точек: , т. к.
и(доказывается в кинематике) (рис. 80).

Элементарная работа всех внутренних сил в твердом теле равна нулю:

.

Следовательно, на любом конечном перемещении тела

.

б) Работа внешних сил.

Поступательное движение тела.

Элементарная работа k –й силы

Для всех сил

.

Так как при поступательном движении , то

,

где
- проекция главного вектора внешних сил на направление перемещения.

Работа сил на конечном перемещении

.

Вращение тела вокруг неподвижной оси .

Элемен­тарная работа k - й силы

где
,
и
- составляю­щие силыпо естественным осям

Так как
,
, то работа этих сил на перемещение
точки приложения силы равна нулю. Тогда

.

Элементарная работа k - й внешней силы равна произве­дению момента этой силы относительно оси вращения
на элементарный угол поворота
тела вокруг оси.

Элементарная работа всех внешних сил

,

где
- главный момент внешних сил относительно оси.

Работа сил на конечном перемещении

.

Если
, то

где
- конечный угол поворота;
, гдеп - число оборотов тела вокруг оси.

Мощность - это работа, выполненная силой в единицу времени . Если работа совершается равномерно, то мощность

,

где А – работа, совершенная силой на конечном перемещении, за время t .

В более общем случае мощность силы можно определить как отношение элементарной работы силы dA к элементарному про­межутку времени dt , за который совершена эта работа, что представляет собой производную от работы по времени. Поэтому

При вращении тела вокруг неподвижной оси

,

где
- угловая скорость вращения тела.

Единицы измерения работы и мощности . В системе СИ единица измерения работы силы - джоуль (1 Дж = 1 Нм ),

Единица измерения мощности соответственно - ватт (1 Вт = 1 Дж/с )

75 кГм/с = 1 л. с . (лошадиная сила).

1 кВт = 1000 Вт = 1,36 л. с .

Работа внутренних сил на конечном перемещении равна нулю.

Работа силы, действующей на поступательно движущееся тело равна произведению этой силы на приращение линейного перемещения.

Работа силы, действующей на вращающееся тело равна произведению момента этой силы относительно оси вращения на приращение угла поворота: ; . Мощность:
.

Кинетическая энергия механической системы при различных видах движения.

Кинетическая энергия механической системы - скаляр, равный сумме кинетических энергий всех точек системы: .

При поступательном движении:

При вращательном движении:

При плоскопараллельном движении: , где d - расстояние от центра масс до МЦС

27. Теорема об изменении кинетической энергии материальнойточки.

Кинетическая энергия материальной точки - скаляр, равный половине произведение массы точки на квадрат ее скорости.

Основное уравнение динамики: , помножим на элементарное перемещение: ; ; . Интегрируя полученное выражение:

Теорема : изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Теорема об изменении кинетической энергии механической системы.

Так как работа внутренних сил равна нулю, то:
.

Теорема : изменение кинетической энергии механической системы на конечном перемещении равно сумме работ внешних сил на том же перемещении.

Принцип возможных перемещений для механической системы.

; , пусть связи, наложенные на точки механической системы двусторонние, стационарные, голономные и идеальные, тогда: .

Принцип возможных перемещений - принцип Лагранжа - для равновесия механической системы с двусторонними, стационарными, голономными и идеальными связями необходимо и достаточно, чтоб алгебраическая сумма работ задаваемых сил на возможном перемещении равнялась нулю.

Принцип Даламбера для материальной точки.

Геометрическая сумма всех приложенных к движущейся материальной точке сил и сил инерции этой точки равна нулю

Принцип Даламбера для несвободной механической системы.

В движущейся несвободной механической системе для каждой материальной точки в любой момент времени геометрическая сумма приложенных к ней задаваемых сил, реакций связи и сил инерции равна нулю. Умножив обе части выражения на r i получим: ;
.

, сумма моментов задаваемых сил, реакций связи и сил инерции относительно осей координат равна нулю.

Приведение сил инерции точек твердого тела к простейшему виду.

К системе сил инерции точек твердого тела, можно применить метод Пуансона, рассмотренный в статике. Тогда любую систему сил инерции можно привести к главному вектору сил инерции и главному моменту сил инерции.

При поступательном движении: Ф=-ma (при поступательном движении твердого тела, силы инерции его точек приводятся к главному вектору сил инерции равному по модулю произведению массы тела, на ускорение центра масс приложенному в этом центре и направленному в сторону противоположному ускорению центра масс).

При вращательном движении: М=-Iε (при вращательном движении твердого тела силы инерции его точек приводятся к главному моменту сил инерции равному произведению момента инерции тела относительно сил вращения на угловое ускорение. Направлен этот момент в сторону противоположному угловому ускорению).

При плоском движении: Ф=-ma М=-Iε (при плоском движении твердого тела силы инерции его точек приводятся к главному вектору и главному моменту сил инерции).

Общее уравнение динамики. Принцип Даламбера-Лагранжа.

Принцип Даламбера: å(P i + R i + Ф i) = 0; å(P i + R i + Ф i)Dr i = 0, полагаем. что связи, наложенные на механическую систему двусторонние, стационарные, голономные и идеальные, тогда: å(R i × Dr i) = 0;

å(P i + Ф i)Dr i = 0 - общее уравнение динамики - для движения механической системы с двусторонними, стационарными, голономными и идеальными связями сумма работ задаваемых сил и сил инерции точек системы на любом возможном перемещении равна нулю.

Просмотр: эта статья прочитана 49920 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Два случая преобразования механического движения материальной точки или системы точек:

  1. механическое движение переносится с одной механической системы на другую в качестве механического движения;
  2. механическое движение превращается в другую форму движения материи (в форму потенциальной энергии, теплоту, электричество и т.д.).

Когда рассматривается преобразование механического движения без перехода его в другую форму движения, мерой механического движения является вектор количества движения материальной точки или механической системы. Мерой действия силы в этом случае является вектор импульса силы.

Когда механическое движение превращается в другую форму движения материи, в качестве меры механического движения выступает кинетическая энергия материальной точки или механической системы. Мерой действия силы при превращении механического движения в другую форму движения является работа силы

Кинетическая энергия

Кинетическая энергия это способность тела преодолевать препятствование во время движения.

Кинетическая энергия материальной точки

Кинетической энергией материальной точки называется скалярная величина, которая равняется половине произведения массы точки на квадрат ее скорости.

Кинетическая энергия:

  • характеризует и поступательное, и вращательное движения;
  • не зависит от направления движения точек системы и не характеризует изменение этих направлений;
  • характеризует действие и внутренних, и внешних сил.

Кинетическая энергия механической системы

Кинетическая энергия системы равняется сумме кинетических энергий тел системы. Кинетическая энергия зависит от вида движения тел системы.

Определение кинетической энергии твердого тела при разных видах движения движениях.

Кинетическая энергия поступательного движения
При поступательном движении кинетическая энергия тела равна Т =m V 2 /2.

Мерой инертности тела при поступательном движении является масса.

Кинетическая энергия вращательного движения тела

При вращательном движении тела кинетическая энергия равняется половине произведения момента инерции тела относительно оси вращения и квадрата его угловой скорости.

Мерой инертности тела при вращательном движении является момент инерции.

Кинетическая энергия тела не зависит от направления вращения тела.

Кинетическая энергия плоскопаралельного движения тела

При плоскопаралельном движении тела кинетическая энергия равна

Работа силы

Работа силы характеризует действие силы на тело при некотором перемещении и определяет изменение модуля скорости подвижной точки.

Элементарная работа силы

Элементарная работа силы определяется как скалярная величина, равная произведению проекции силы на касательную к траектории, направленную в направлении движения точки, и бесконечно малого перемещения точки, направленного вдоль этой касательной.

Работа силы на конечном перемещении

Работа силы на конечном перемещении равна сумме ее работ на элементарных участках.

Работа силы на конечном перемещении М 1 М 0 равняется интегралу вдоль этого перемещения от элементарной работы.

Работа силы на перемещении М 1 М 2 изображается площадью фигуры, ограниченной осью абсцисс, кривой и ординатами, соответствующими точкам М 1 и М 0 .

Единица измерения работы силы и кинетической энергии в системе СИ 1 (Дж).

Теоремы о работе силы

Теорема 1 . Работа равнодействующей силы на некотором перемещении равна алгебраической сумме работ составляющих сил на том же перемещении.

Теорема 2. Работа постоянной силы на результирующем перемещении равна алгебраической сумме работ этой силы на составляющих перемещениях.

Мощность

Мощность - это величина, которая определяет работу силы за единицу времени.

Единицей измерения мощности есть 1Вт = 1 Дж/с.

Случаи определения работы сил

Работа внутренних сил

Сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

Работа силы тяжести

Работа силы упругости

Работа силы трения

Работа сил, приложенных к вращающемуся телу

Элементарная работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота.

Сопротивление качению

В зоне контакта неподвижого цилиндра и плоскости возникает местная деформация контактного сжатия, напряжение распределяются по эллиптическому закону и линия действия равнодействующей N этих напряжений совпадает с линией действия силы нагрузки на цилиндр Q. При перекатывании цилиндра распределение нагрузки становится несимметричным с максимумом, смещенным в сторону движения. Равнодействующая N смещается на величину k - плечо силы трения качения, которая еще назвается коэффициентом трения качения и имеет размерность длины (см)

Теорема об изменении кинетической энергии материальной точки

Изменение кинетической энергии материальной точки на некотором ее перемещении равняется алгебраической сумме робот всех действующих на точку сил на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Изменение кинетической энергии механической системы на некотором перемещении равняется алгебраической сумме робот внутренних и внешних сил, действующих на материальные точки системы на том же перемещении.

Теорема об изменении кинетической энергии твердого тела

Изменение кинетической энергии твердого тела (неизменной системы) на некотором перемещении равняется сумме робот внешних сил, действующих на точки системы на том же перемещении.

КПД

Силы, действующие в механизмах

Силы и пары сил (моменты), которые приложены к механизму или машине, можно разделить на группы:

1.Движущие силы и моменты, совершающие положительную работу (приложенные к ведущим звеньям, например, давление газа на поршень в ДВС).

2. Силы и моменты сопротивления, совершающие отрицательную работу:

  • полезного сопротивления (совершают требуемую от машины работу и приложены к ведомым звеньям, например сопротивление поднимаемого машиной груза),
  • силы сопротивления (например, силы трения, сопротивление воздуха и т.п.).

3. Силы тяжести и силы упругости пружин (как положительная, так и отрицательная работа, при этом работа за полный цикл равна нулю).

4. Силы и моменты, приложенные к корпусу или стойке извне (реакция фундамента и т.п.), которые не совершают работу.

5. Силы взаимодействия между звеньями, действующие в кинематических парах.

6. Силы инерции звеньев, обусловленные массой и движением звеньев с ускорением, могут осуществлять положительную, отрицательную работу и не совершать работы.

Работа сил в механизмах

При установившемся режиме работы машины ее кинетическая энергия не изменяется и сумма работ приложенных к ней движущих сил и сил сопротивления равна нулю.

Работа, затрачиваемая на приведение машины в движение, расходуется на преодоление полезных и вредных сопротивлений.

КПД механизмов

Механический коэффициент полезного действия при установившемся движении равен отношению полезной работы машины к работе, затраченной на приведение машины в движение:

Элементы машины могут соединяться последовательно, параллельно и смешанно.

КПД при последовательном соединении

При последовательном соединении механизмов общий КПД меньше с наименьшего КПД отдельного механизма.

КПД при параллельном соединении

При параллельном соединении механизмов общий КПД больше наименьшего и меньше наибольшего КПД отдельного механизма.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы

нальности (∂ f ∂ ϕ ) 2 . Отсюда видно, что коэффициент инерции объекта зави-

сит от выбора обобщенной координаты и может быть пересчитан.

КЭ нестационарной голономной одностепенной системы имеет струк-

туру квадратного полинома относительно обобщенной скорости q & , коэффи-

циенты которой в общем случае зависят от q и t :

2T = aq & 2 + 2a 1 q & + 2a 0 , при a = a (q ,t ), a 1 = a 1 (q ,t ), a 0 = a 0 (q ,t ) (5.10)

Размерность коэффициентов a , a 0 ,a 1 определяем по принципу Л.Эйлера: все слагаемые в выражениях должны иметь одинаковую размерность.

5.3. Мощность силы

Область пространства, в которой к материальному объекту приложена сила, называется векторным силовым полем . Эта область может быть трехмерной (например-шаровой), либо двумерной, либо представлять отрезок прямой или кривой линии. Обычно считают, что сила зависит только от координат (x , y , z ) точки приложения силы, либо - от одной или двух координат, либо – постоянная по модулю и направлению. Допускаются также случаи, когда силы зависят и от скорости точки и от времени, т.е. сила задана в области пространства координат, скоростей, времени. Встречаются случаи, ко-

гда сила зависит от ускорения.

в мгновение t в системе отсчета Oxyz называется

Мощностью силы F

скаляр, равный скалярному произведению силы

на скорость точки прило-

жения силы v в этой системе:

м/c=Вт)

Fv cos(F ,v )

Zz, (Н

Согласно данному определению мощность силы есть положительный скаляр, если угол между силой и скоростью острый (в этом случае сила способствует движению, нарастанию кинетической энергии) и отрицательна, если угол тупой.(когда сила замедляет движение). Мощность силы равна нулю, если сила перпендикулярна к скорости точки приложения силы, или в случае, если точка приложения силы не имеет скорости.

Мощности в двух системах отсчета различны в случае, если системы движутся одна относительно другой, поэтому следует указывать систему отсчета, в которой вычисляется мощность сил.

Мощность сил трения, также как и других диссипативных сил, направленных против движения, отрицательна.

Мощность силы сцепления колеса с дорогой (если нет проскальзывания колеса) равна нулю, поскольку точка приложения силы не имеет скорости.

Рассмотрим случай, когда силы зависят только от положения точки при-

U (x , y , z ) - функция положения точки приложения силы, т.е. – функция декартовых (или обобщенных) координат. В этом случае силу F (x , y , z ) называют потенциальной , а “силовую функцию” U с обратным знаком, называют

потенциальной энергией : П (x , y , z ) = − U (x , y , z ) . Область пространства, в ко-

торой на тело действует потенциальная сила, называется потенциальным силовым полем . Под знаком производной можно добовлять любую константу, поэтому силовая функция и потенциальная энергия определяется с точностью до константы, определяющей уровень отсчета. В общем случае, потенциальную энергию можно определить как функцию П (q 1 ,..., q n ) , получаемую

путем преобразования мощности к виду: P = − П & (q 1 ,..., q n ) , где q s – обобщен-

ные координаты.

Пусть тело произвольно движется в пространстве, т.е. оно перемещается вместе с полюсом O со скоростью v O и вращается с угловой скоростью ω .

Мощность пары сил, приложенной к твердому телу, не зависит от скорости полюса. Она равна скалярному произведению момента пары сил и угловой скорости.

P = M

M ω cos(M ,ω

) = M xω x + M yω y + M zω z ,

где M - момент пары сил, ω - угловая скорость твердого тела, которая, как известно, не зависит от выбора полюса. Мощность диссипативных пар сил отрицательна. Мощность пары сил не зависит от места приложения её к телу. Мощность пары сил трения в подшипнике отрицательная, поскольку момент трения и угловая скорость вращения противонаправлены.

Мощность системы сил, приложенных к твердому телу, равна скалярному произведению главного вектора R системы на скорость любого полюса тела, сложенному со скалярным произведением главного момента M 0 сил относительно этого полюса на угловую скорости тела:

v O + M

O ω

при R = ∑ F i , M O = ∑ r i × F i .

5.4. Работа и потенциальная энергия

Элементарной работой силы в выбранной системе координат Oxyz (неподвижной или подвижной) называется бесконечно малая величина, равная скалярному произведению силы на элементарное перемещение точки приложения силы в этой системе:

d ′ A = F

d r = Xdx + Ydy + Zdz = F | d r | cos(F ,d r ), (Н м=Дж)

Здесь через d ΄A обозначена бесконечно малая работа, совершаемая силой за бесконечно малый интервал времени, d r - элементарное перемещение, сонаправленное со скоростью точки. Штрихом отмечено, что d ΄A не всегда является полным дифференциалом от некоторой функции.

Очевидно, что произведение Pdt равно элементарной работе d ΄A :

Мощность, умноженная на малый интервал времени ∆t , есть приближенное значение работы ∆A силы за этот интервал, мощность приближенно равна работе силы за 1 сек. Работой силы за конечный интервал времени называется определенный интеграл от мощности по времени:

A12 = ∫ Pdt = ∫

v dt при v = r & = dr / dt .

Для расчета работы по данной общей формуле необходимо знать мощность как функцию времени или силу и скорость в виде функций только времени t . Но в некоторых частных случаях (случай потенциальной силы, случай постоянной силы трения при неизменном направлении движения) возможно вычисление работы без применения кинематических уравнений движения точки приложения силы, достаточно знать только начальное и конечное положение точки.

Рассмотрим движение точки приложения силы по отношению к двум системам отсчета, движущимся одна относительно другой. Скорость точки в двух системах различна, поэтому и мощность силы будет различной. Таким образом, понятия мощность, работа, формулируется по отношению к конкретной системе отсчета, преимущественно – по отношению к ИСО или ПСО (инерционной или поступательной системам отсчета).

Определение Сила F называется потенциальной , а ее силовое поле -

потенциальным силовым полем , если выполнены два условия:

1) Сила удовлетворяет одному из следующих условий: сила постоянна по величине и направлению F = const или зависит только от координат точки (всех трех или части) ее приложения, т.е. F = F (x , y , z ).

2) Элементарная работа d ′ A силы есть полный дифференциал от некоторой функции координат, либо мощность силы в любой момент времени равна полной производной по времени от некоторой функции Π (x , y , z )

Функция П(x ,y ,z ), получаемая посредством преобразования выражения элементарной работы, либо из выражения мощности, называется по-

тенциальной энергией потенциального силового поля в точке M(x, y, z).

Тем самым векторному силовому полю силы F (x , y , z ) сопоставляется

математически более простое поле скалярной функции трех переменных П(x , y , z ), либо - функции двух переменных П(x ,y ), либо - функции одной переменной П(x )

Потенциальная энергия может быть представлена не только в декартовой системе координат, но также - в цилиндрической, сферической системах координат, в общем она является функцией некоторых обобщенных коорди-

нат П(q 1 , q 2 , q 3 ).

Поверхности, определенные уравнением П(q 1 , q 2 , q 3 )=C, где C - произвольно назначаемый постоянный параметр, называются эквипотенциальными поверхностями .

Заметим, что под знаком дифференциала всегда можно прибавить или вычесть любую константу, так что функция П в формуле (5.18) определяется с точностью до константы. Константу произвольно назначают, например, полагают равной нулю, выбирая тем самым уровень отсчета семейства эквипотенциальных поверхностей.

Мощность потенциальной силы равна взятой со знаком минус произ-

водной по времени от потенциальной энергии P = −Π & . Подставим это выражение в определенный интеграл (5.17). Получим выражение работы потенциальной силы на конечном перемещении точки приложения силы, осуществленном за конечный промежуток времени:

A 12 = П(x 1 , y 1 , z 1 ) – П(x 2 , y 2 , z 2 ) = П1 – П2 .

Таким образом, работа потенциальной силы при ее перемещении за ин-

тервал из точки M 1 (x 1 , y 1 , z 1 ) в точку M 2 (x 2 , y 2 , z 2 ) по любой траектории равна убыли потенциальной энергии на этом перемещении, т.е. равна разно-

сти потенциальных энергий в первой и второй точках потенциального поля. Работа потенциальной силы не зависит от формы траектории, соединяющей две точки. В частности, работа потенциальной силы на любой замкнутой траектории равна нулю, а работа при переходе точки приложения силы с эквипотенциальной поверхности П=С1 на поверхность П=С2 равна разно-

сти констант: А12 =С1 -С2 .

Частный случай В качестве начальной точки M 1 (x 1 , y 1 , z 1 ) возьмем любую точку M (x , y , z ) потенциального поля, а в качестве M 2 (x 2 , y 2 , z 2 ) возьмем такую точку поля M (x O , y O , z O ), в которой потенциальная энергия принята равной

Получаем следующую физическую интерпретацию. Потенциальная энергия в любой точке M потенциального поля равна работе приложенной силы при перемещении ее точки приложения из положения M по любой гладкой или негладкой траектории в такое положение, в котором потенциальная энергия принята равной нулю, а также равна взятой со знаком минус работе силы на перемещении в положение M (x ,y ,z ) из “нулевого” положения, в котором потенциальная энергия принята равной нулю.

Пример 1 Найдем потенциальную энергию силы тяжести G = − Gk , про-

тивонаправленной с ортом k вертикальной оси Oz системы Oxyz . Методом элементарной работы получаем:

d ΄A = G x dx + G y dy + G z dz = –Gdz = – d (Gz ) => П = Gz .

Методом мощности получаем

P = G x x & +G y y & +G z z & = −Gz & = −(Gz ) Π = Gz .

Таким образом, потенциальная энергия силы тяжести равна произведению веса материальной точки на высоту расположения точки M над плоскостью Oxy , удовлетворяющей условию z = 0. Здесь плоскость Oxy назначена

нулевой эквопотенциальной плоскостью. Потенциальная энергия силы тяжести отрицательна в точках, расположенных под плоскостью Oxy , при z < 0. На любых горизонтальных плоскостях данная потенциальная энергия одинакова во всех точках, т.е. горизонтальные плоскости являются эквипотенциальными поверхностями. Работа силы тяжести на перемещении с плоскости уровня z = z 1 на плоскость z = z 2 определяется по формуле:

A 12 = П1 – П2 = G (z 1 – z 2 ) = ± Gh при h = |z 1 –z 2 |.

Эта работа пропорциональна разности (убыли) уровней, она отрицательна, если первый уровень ниже, чем второй.

Замечание . В случае если ось Oz направлена вниз, получаем формулу с обратным знаком: П = –Gz .

Пример 2 . Потенциальная энергии силы упругости пружины. Силовое поле горизонтальной пружины имеет вид горизонтальной оси Ox . Начало оси совместим со свободным концом недеформированной пружины, x - деформация растяжения пружины при x > 0, или сжатия пружины при x < 0. Упругая сила пружины F = − cxi , где i - орт оси x . Она всегда направлена противоположно деформации. Методом мощности находим потенциальную энергию силы упругости

P = Fx x = − c x x = − (c x

Π = cx

Вообразим, что пружина очень медленно растягивается внешней силой,

медленно нарастающей от нуля до значения F вн = cxi . Считаем, что в каждый момент времени упругая сила пружины уравновешивает внешнию силу.

Среднее значение величины силы F вн на интервале равно: F cр = cx / 2 .

Упругая сила пружины, совершая при этом отрицательную работу по сопротивлению растягиванию, запасает в пружине положительную потенциальную

энергию, равную Π = F x = cx 2 / 2.

Работа упругой силы на деформации

X 2 − x 1 равна A 12 = (x 2 2 – x 1 2 )c /2.

Очевидно, что A 12 < 0 при x1 < x2 и A 12 > 0 при x1 > x2

3 . Сила тяготения Земли

по закону "обратных квадратов":

F = γ m m / r2 ,

= − γ m m r / r 3 , где r - радиус-вектор материальной точки в

геоцентрической системе отсчета, γ = 6,672· 10–11 (м3 /(кг· с2 ) - постоянная тя-

готения, r / r = e - орт радиус-вектора тела (материальной точки), проведенного из центра Земли, m 1 = 6· 1024 (кг)- масса Земли, m - масса тела, γm 1 =

3986· 1011 (м3 /с2 ) - геоцентрическая гравитационная постоянная. Учитывая

тождества r r = r 2 ,

γ m1 m

γ m1 m

γ m1 m

γ m1 m

d A = −

r dr = −

dr = d (−

Π(r ) = −

Отметим, что П(r )→0 при r →∞, следовательно, потенциальная энергия

на бесконечности принята равной нулю.

"

В разделе "Кинематика" установлено, что скорость любой точки твердого тела геометрически складывается из скорости точки, принятой за полюс, и скорости, полученной точкой при сферическом движении тела вокруг полюса. В динамике за полюс всегда принимают центр масс тела. Скорость любой точки тела определяется по формуле

– скорость центра масс тела;

– вектор мгновенной угловой скорости тела;

– радиус-вектор по отношению к центру масс тела.

Для мощности силы, приложенной к абсолютно твердому телу, получаем:

Особый интерес представляет плоскопараллельное движение твердого тела. В этом важном частном случае мощность силы может быть вычислена по формуле:

где – угол между векторами силы и скорости центра масс тела.

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механикакраткий курс конспект лекций по теоретической механике

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования.. московский государственный строительный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные законы механики
Теоретическая механика относится к числу так называемых аксиоматических наук. В ее основе лежит система исходных положений – аксиом, принимаемых без доказательства, но проверенных не только прямыми

Аксиома 3
Две материальные точки взаимодействуют с силами, равными по модулю и направленными по одной прямой в противоположные стороны (Рис.!.2). Аксиома 4(Принцип

Скорость точки
Быстроту движения точки характеризует ее скорость, к определению которой мы сейчас переходим. Пусть в момент времени

Ускорение точки
Быстроту изменения вектора скорости характеризует ускорение точки. Пусть в момент времени точка нах

Аксиома 3
Система двух сил, приложенная к абсолютно твердому телу, уравновешена (эквивалентна нулю) тогда и только тогда, когда эти силы равны по модулю и действуют по одной прямой в противоположные

Момент силы относительно точки
Пусть дана сила, приложенная в точке

Момент силы относительно оси
Моментом силы относительно оси называется проекция на ось момента силы, вычисленного относительно любой точки этой оси:

Пара сил
Парой сил называется система двух сил, равных по модулю и действующих по параллельным прямым в противоположные стороны. Плоскость, в ко

Дифференциальные уравнения движения механической системы
Рассмотрим механическую систему, состоящую из материальных точек. Для каждой точки системы в инерциальной системе о

Основные свойства внутренних сил
Рассмотрим две любые точки механической системы и

Теорема об изменении количества движения механической системы
Сложим почленно все равенства (3.1): Учитывая первое основное св

Теорема об изменении кинетического момента
Умножим каждое из уравнений (3.1) слева векторно на радиус–вектор соответствующей точки и сложим

Условия равновесия
Остановимся на вопросах равновесия материальных тел, которые составляют существенную часть раздела "Статика" курса теоретической механики. Под равновесием в механике традиционно

Равновесие системы сил, линии действия которых лежат в одной плоскости
Во многих практически интересных случаях тело находится в равновесии под действием системы сил, линии действия которых расположены в одной плоскости. Примем эту плоскость за координатную

Расчет ферм
Особое место в ряду статических задач занимает расчет ферм. Фермой называется жесткая конструкция из прямолинейных стержней (Рис.3.3). Если все стержни фермы и вся приложенная к ней

Равновесие тела при наличии трения
Как известно, при скольжении тела по опорной поверхности возникает сопротивление, тормозящее скольжение. Это явление учитывается путем введения в рассмотрение силы трения.

Центр параллельных сил
Это понятие вводится для системы параллельных сил, имеющих равнодействующую, причем точки приложения сил системы – точки

Центр тяжести тела
Рассмотрим материальное тело, расположенное вблизи поверхности Земли (в поле земного притяжения). Допустим сначала, что тело состоит из конечного числа материальных точек, другими словами – частиц,

Центр масс механической системы. Теорема о движении центра масс
Инерционные свойства материального тела определяются не только его массой, но и характером распределения этой массы в теле. Существенную роль в описании такого распределения играет положение центра

ЛЕКЦИЯ 5
5.1. Движение абсолютно твёрдого тела Одной из важнейших задач механики является описание движения абсолютно твердого тела. В общем случае различные точки

Поступательное движение твердого тела
Поступательным называется движение твердого тела, при котором любая прямая, проведенная в теле, остается параллельной своему первоначальному положению во все время движения.

Кинематика вращательного движения твердого тела
При вращательном движении в теле существует единственная прямая, все точки которой

Скоростью тела
Окончательно получаем: (5.4) Формула (5.4) называется формулой Эйлера. На Рис.5.

Дифференциальное уравнение вращательного движения твердого тела
Вращение твердого тела, как и любое другое движение, происходит в результате воздействия внешних сил. Для описания вращательного движения используем теорему об изменении кинетического момента относ

Кинематика плоскопараллельного движения твердого тела
Движение тела называется плоскопараллельным, если расстояние от любой точки тела до некоторой неподвижной (основной) плоскости остается неизменным во все время движения

Дифференциальные уравнения плоскопараллельного движения твердого тела
При изучении кинематики плоско-параллельного движения твердого тела за полюс можно принимать любую точку тела. При решении задач динамики за полюс всегда принимают центр масс тела, а в качестве под

Система Кенига. Первая теорема Кенига
(Изучить самостоятельно) Пусть система отсчета неподвижная (инерциальная). Система

Работа и мощность силы. Потенциальная энергия
Половина произведения массы точки на квадрат ее скорости называется кинетической энергией материальной точки. Кинетической энергией механической системы назы

Теорема об изменении кинетической энергии механической системы
Теорема об изменении кинетической энергии относится к числу общих теорем динамики наряду с доказанными ранее теоремами об изменении количества движения и изменения момента количеств

Работа внутренних сил геометрически неизменяемой механической системы
Заметим, что в отличие от теоремы об изменении количества движения и теоремы об изменении кинетического момента в теорему об изменении кинетической энергии в общем случае входят внутренние силы.

Вычисление кинетической энергии абсолютно твердого тела
Получим формулы для вычисления кинетической энергии абсолютно твердого тела при некоторых его движениях. 1. При поступательном движении в любой момент времени скорости всех точек тела один

Работа силы тяжести
При вычислении работы силы тяжести будем считать, что мы рассматриваем ограниченную область пространства вблизи поверхности Земли, размеры которой малы по сравнению с размерами Земл

Работа упругой силы
Понятие упругой силы обычно ассоциируется с реакцией линейно–упругой пружины. Направим ось вдоль пр

Работа вращающего момента
Пусть сила приложена в некоторой точке тела, имеющего ось вращения. Тело вращается с угловой скорос

Возможные скорости и возможные перемещения
Понятия возможной скорости и возможного перемещения введем сначала для материальной точки, на которую наложена голономная удерживающая нестационарная связь. Возможной скоростью мат

Идеальные связи
Связи, наложенные на механическую систему, называются идеальными, если сумма работ всех реакций связей на любом возможном перемещении системы равна нулю:

Принцип возможных перемещений
Принцип возможных перемещений устанавливает условия равновесия механических систем. Под равновесием механической системы традиционно понимают состояние ее покоя по отношению к выбранной инерциально

Общее уравнение динамики
Рассмотрим механическую систему, состоящую из материальных точек, на которую наложены идеальные уде


© 2024
polyester.ru - Журнал для девушек и женщин