25.09.2020

Обратная теорема виета для квадратного уравнения. Теорема Виета. Примеры решения. Значение теоремы Виета


Практически любое квадратное уравнение \можно преобразовать к виду \ Однако это возможно, если изначально разделить каждое слагаемое на коэффициент \ перед \ Кроме того, можно ввести новое обозначение:

\[(\frac {b}{a})= p\] и \[(\frac {c}{a}) = q\]

Благодаря чему будем иметь уравнение \ именуемое в математике приведенным квадратным уравнением. Корни данного уравнения и коэффициенты \ взаимосвязаны между собой, что подтверждено теоремой Виета.

Теорема Виета: Сумма корней приведенного квадратного уравнения \ равна второму коэффициенту \ взятому с противоположным знаком, а произведение корней - свободному члену \

Для наглядности решим уравнение следующего вида:

Решим данное квадратное уравнение с помощью выписанных правил. Проанализировав исходные данные, можно сделать вывод, что уравнение будет иметь два различных корня, поскольку:

Теперь из всех множителей числа 15 (1 и 15, 3 и 5) выбираем те, разность которых равна 2. Под это условие попадают числа 3 и 5. Перед меньшим числом ставим знак "минус". Таким образом, получим корни уравнения \

Ответ: \[ x_1= -3 и x_2 = 5\]

Где можно решить уравнение по теореме Виета онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

При изучении способов решения уравнений второго порядка в школьном курсе алгебры, рассматривают свойства полученных корней. Они в настоящее время известны под названием теоремы Виета. Примеры использования ее приводятся в данной статье.

Квадратное уравнение

Уравнение второго порядка представляет собой равенство, которое показано на фото ниже.

Здесь символы a, b, c являются некоторыми числами, носящими название коэффициентов рассматриваемого уравнения. Чтобы решить равенство, необходимо найти такие значения x, которые делают его истинным.

Заметим, что поскольку максимальное значение степени, в которую возводится икс, равно двум, тогда число корней в общем случае также равно двум.

Для решения этого типа равенств существует несколько способов. В данной статье рассмотрим один из них, который предполагает использование так называемой теоремы Виета.

Формулировка теоремы Виета

В конце XVI известный математик Франсуа Виет (француз) заметил, анализируя свойства корней различных квадратных уравнений, что определенные их комбинации удовлетворяют конкретным соотношениям. В частности, этими комбинациями является их произведение и сумма.

Теорема Виета устанавливает следующее: корни квадратного уравнения при их сумме дают отношение коэффициентов линейного к квадратичному взятое с обратным знаком, а при их произведении приводят к отношению свободного члена к квадратичному коэффициенту.

Если общий вид уравнения записан так, как это представлено на фото в предыдущем разделе статьи, тогда математически эту теорему можно записать в виде двух равенств:

  • r 2 + r 1 = -b / a;
  • r 1 х r 2 = c / a.

Где r 1 , r 2 - это значение корней рассматриваемого уравнения.

Приведенные два равенства можно использовать для решения ряда самых разных математических задач. Использование теоремы Виета в примерах с решением приведены в следующих разделах статьи.

Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета

Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).

Если более подробно, то теорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.

При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.

Доказательство теоремы Виета

Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны и, соответственно, .

Допустим у нас есть уравнение: . У этого уравнения есть такие корни: и . Докажем, что , .

По формулам корней квадратного уравнения:

1. Найдём сумму корней:

Разберём это уравнение, как оно у нас получилось именно таким:

= .

Шаг 1 . Приводим дроби к общему знаменателю, получается:

= = .

Шаг 2 . У нас получилась дробь, где нужно раскрыть скобки:

Сокращаем дробь на 2 и получаем:

Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.

2. Найдём произведение корней:

= = = = = .

Докажем это уравнение:

Шаг 1 . Есть правило умножение дробей, по которому мы и умножаем данное уравнение:

Теперь вспоминаем определение квадратного корня и считаем:

= .

Шаг 3 . Вспоминаем дискриминант квадратного уравнения: . Поэтому в последнюю дробь вместо D (дискриминанта) мы подставляем , тогда получается:

= .

Шаг 4 . Раскрываем скобки и приводим подобные слагаемые к дроби:

Шаг 5 . Сокращаем «4a» и получаем .

Вот мы и доказали соотношение для произведения корней по теореме Виета.

ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.

Теорема, обратная теореме Виета

По теореме, обратной теореме Виета можно проверять, правильно ли решено наше уравнение. Чтобы понять саму теорему, нужно более подробно её рассмотреть.

Если числа и такие:

И , тогда они и есть корнями квадратного уравнения .

Доказательство обратной теоремы Виета

Шаг 1. Подставим в уравнение выражения для его коэффициентов:

Шаг 2. Преобразуем левую часть уравнения:

Шаг 3 . Найдём Корни уравнения , а для этого используем свойство о равенстве произведения нулю:

Или . Откуда и получается: или .

Примеры с решениями по теореме Виета

Пример 1

Задание

Найдите сумму, произведение и сумму квадратов корней квадратного уравнения , не находя корней уравнения.

Решение

Шаг 1 . Вспомним формулу дискриминанта . Подставляем наши цифры под буквы. То есть, , – это заменяет , а . Отсюда следует:

Получается:

Title="Rendered by QuickLaTeX.com" height="13" width="170" style="vertical-align: -1px;">. Если дискриминант больше нуля, тогда у уравнения есть корни. По теореме Виета их сумма , а произведение .

Выразим сумму квадратов корней через их сумму и произведение:

Ответ

7; 12; 25.

Пример 2

Задание

Решите уравнение . При этом не применяйте формулы квадратного уравнения.

Решение

У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа , сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.

Ответ

И Пример 4

Задание

Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:

Решение

По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.

Сумма корней нового уравнения будет равна:

А произведение .

По теореме, обратной теореме Виета, новое уравнение имеет вид:

Ответ

Получилось уравнение, каждый корень которого в два раза больше:

Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле свободный член – число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.

А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.

Полезные источники:

  1. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. Алгебра 8 класс: Москва “Просвещение”, 2016 – 318 с.
  2. Рубин А. Г., Чулков П. В. – учебник Алгебра 8 класс:Москва “Баласс”, 2015 – 237 с.
  3. Никольский С. М., Потопав М. К., Решетников Н. Н., Шевкин А. В. – Алгебра 8 класс: Москва “Просвещение”, 2014 – 300

Теорема Виета, обратная формула Виета и примеры с решением для чайников обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру

Теорема Виета часто используется для проверки уже найденных корней . Если вы нашли корни, то сможете с помощью формул \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) вычислить значения \(p\) и \(q\). И если они получатся такими же как в исходном уравнении – значит корни найдены верно.

Например, пусть мы, используя , решили уравнение \(x^2+x-56=0\) и получили корни: \(x_1=7\), \(x_2=-8\). Проверим, не ошиблись ли мы в процессе решения. В нашем случае \(p=1\), а \(q=-56\). По теореме Виета имеем:

\(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}7+(-8)=-1\\7\cdot(-8)=-56\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1=-1\\-56=-56\end{cases}\)

Оба утверждения сошлись, значит, мы решили уравнение правильно.

Такую проверку можно проводить устно. Она займет 5 секунд и убережет вас от глупых ошибок.

Обратная теорема Виета

Если \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\), то \(x_1\) и \(x_2\) – корни квадратного уравнения \(x^2+px+q=0\).

Или по-простому: если у вас есть уравнение вида \(x^2+px+q=0\), то решив систему \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) вы найдете его корни.

Благодаря этой теореме можно быстро подобрать корни квадратного уравнения, особенно если эти корни – . Это умение важно, так как экономит много времени.


Пример . Решить уравнение \(x^2-5x+6=0\).

Решение : Воспользовавшись обратной теоремой Виета, получаем, что корни удовлетворяют условиям: \(\begin{cases}x_1+x_2=5 \\x_1 \cdot x_2=6\end{cases}\).
Посмотрите на второе уравнение системы \(x_1 \cdot x_2=6\). На какие два можно разложить число \(6\)? На \(2\) и \(3\), \(6\) и \(1\) либо \(-2\) и \(-3\), и \(-6\) и \(-1\). А какую пару выбрать, подскажет первое уравнение системы: \(x_1+x_2=5\). Походят \(2\) и \(3\), так как \(2+3=5\).
Ответ : \(x_1=2\), \(x_2=3\).


Примеры . Используя теорему, обратную теореме Виета, найдите корни квадратного уравнения:
а) \(x^2-15x+14=0\); б) \(x^2+3x-4=0\); в) \(x^2+9x+20=0\); г) \(x^2-88x+780=0\).

Решение :
а) \(x^2-15x+14=0\) – на какие множители раскладывается \(14\)? \(2\) и \(7\), \(-2\) и \(-7\), \(-1\) и \(-14\), \(1\) и \(14\). Какие пары чисел в сумме дадут \(15\)? Ответ: \(1\) и \(14\).

б) \(x^2+3x-4=0\) – на какие множители раскладывается \(-4\)? \(-2\) и \(2\), \(4\) и \(-1\), \(1\) и \(-4\). Какие пары чисел в сумме дадут \(-3\)? Ответ: \(1\) и \(-4\).

в) \(x^2+9x+20=0\) – на какие множители раскладывается \(20\)? \(4\) и \(5\), \(-4\) и \(-5\), \(2\) и \(10\), \(-2\) и \(-10\), \(-20\) и \(-1\), \(20\) и \(1\). Какие пары чисел в сумме дадут \(-9\)? Ответ: \(-4\) и \(-5\).

г) \(x^2-88x+780=0\) – на какие множители раскладывается \(780\)? \(390\) и \(2\). Они в сумме дадут \(88\)? Нет. Еще какие множители есть у \(780\)? \(78\) и \(10\). Они в сумме дадут \(88\)? Да. Ответ: \(78\) и \(10\).

Необязательно последнее слагаемое раскладывать на все возможные множители (как в последнем примере). Можно сразу проверять дает ли их сумма \(-p\).


Важно! Теорема Виета и обратная теорема работают только с , то есть таким, у которого коэффициент перед \(x^2\) равен единице. Если же у нас изначально дано не приведенное уравнение, то мы можем сделать его приведенным, просто разделив на коэффициент, стоящий перед \(x^2\).

Например , пусть дано уравнение \(2x^2-4x-6=0\) и мы хотим воспользоваться одной из теорем Виета. Но не можем, так как коэффициент перед \(x^2\) равен \(2\). Избавимся от него, разделив все уравнение на \(2\).

\(2x^2-4x-6=0\) \(|:2\)
\(x^2-2x-3=0\)

Готово. Теперь можно пользоваться обеими теоремами.

Ответы на часто задаваемые вопросы

Вопрос: По теореме Виета можно решить любые ?
Ответ: К сожалению, нет. Если в уравнении не целые или уравнение вообще не имеет корней, то теорема Виета не поможет. В этом случае надо пользоваться дискриминантом . К счастью, 80% уравнений в школьном курсе математике имеют целые решения.

В восьмом классе, учащиеся знакомятся с квадратными уравнениями и способами их решения. При этом, как показывает опыт, большинство учащихся при решении полных квадратных уравнений применяют только один способ – формулу корней квадратного уравнения. Для учеников, хорошо владеющих навыками устного счета, этот способ явно нерационален. Решать квадратные уравнения учащимся приходится часто и в старших классах, а там тратить время на расчет дискриминанта просто жалко. На мой взгляд, при изучении квадратных уравнений, следует уделить больше времени и внимания применению теоремы Виета (по программе А.Г. Мордковича Алгебра-8, на изучение темы “Теорема Виета. Разложение квадратного трехчлена на линейные множители” запланировано только два часа).

В большинстве учебников алгебры эта теорема формулируется для приведенного квадратного уравнения и гласит, что если уравнение имеет корни и , то для них выполняются равенства , . Затем формулируется утверждение, обратное к теореме Виета, и предлагается ряд примеров для отработки этой темы.

Возьмем конкретные примеры и проследим на них логику решения с помощью теоремы Виета.

Пример 1. Решить уравнение .

Допустим, это уравнение имеет корни, а именно, и . Тогда по теореме Виета одновременно должны выполняться равенства

Обратим внимание, что произведение корней – положительное число. А значит, корни уравнения одного знака. А так как сумма корней также является положительным числом, делаем вывод, что оба корня уравнения – положительные. Вернемся снова к произведению корней. Допустим, что корни уравнения – целые положительные числа. Тогда получить верное первое равенство можно только двумя способами (с точностью до порядка множителей): или . Проверим для предложенных пар чисел выполнимость второго утверждения теоремы Виета: . Таким образом, числа 2 и 3 удовлетворяют обоим равенствам, а значит, и являются корнями заданного уравнения.

Ответ: 2; 3.

Выделим основные этапы рассуждений при решении приведенного квадратного уравнения с помощью теоремы Виета:

записать утверждение теоремы Виета (*)
  • определить знаки корней уравнения (Если произведение и сумма корней – положительные, то оба корня – положительные числа. Если произведение корней – положительное число, а сумма корней – отрицательное, то оба корня – отрицательные числа. Если произведение корней – отрицательное число, то корни имеют разные знаки. При этом, если сумма корней – положительная, то больший по модулю корень является положительным числом, а если сумма корней меньше нуля, то больший по модулю корень – отрицательное число);
  • подобрать пары целых чисел, произведение которых дает верное первое равенство в записи (*);
  • из найденных пар чисел выбрать ту пару, которая при подстановке во второе равенство в записи (*) даст верное равенство;
  • указать в ответе найденные корни уравнения.

Приведем еще примеры.

Пример 2. Решите уравнение .

Решение.

Пусть и - корни заданного уравнения. Тогда по теореме Виета Заметим, что произведение – положительное, а сумма – отрицательное число. Значит, оба корня – отрицательные числа. Подбираем пары множителей, дающих произведение 10 (-1 и -10; -2 и -5). Вторая пара чисел в сумме дает -7. Значит, числа -2 и -5 являются корнями данного уравнения.

Ответ: -2; -5.

Пример 3. Решите уравнение .

Решение.

Пусть и - корни заданного уравнения. Тогда по теореме Виета Заметим, что произведение – отрицательное. Значит, корни – разного знака. Сумма корней – также отрицательное число. Значит, больший по модулю корень – отрицательный. Подбираем пары множителей, дающих произведение -10 (1 и -10; 2 и -5). Вторая пара чисел в сумме дает -3. Значит, числа 2 и -5 являются корнями данного уравнения.

Ответ: 2; -5.

Заметим, что теорему Виета в принципе можно сформулировать и для полного квадратного уравнения: если квадратное уравнение имеет корни и , то для них выполняются равенства , . Однако применение этой теоремы довольно проблематично, так как в полном квадратном уравнении по крайней мере один из корней (при их наличии, конечно) является дробным числом. А работать с подбором дробей долго и трудно. Но все-таки выход есть.

Рассмотрим полное квадратное уравнение . Умножим обе части уравнения на первый коэффициент а и запишем уравнение в виде . Введем новую переменную и получим приведенное квадратное уравнение , корни которого и (при их наличии) могут быть найдены по теореме Виета. Тогда корни исходного уравнения будут . Обратим внимание, что составить вспомогательное приведенное уравнение очень просто: второй коэффициент сохраняется, а третий коэффициент равен произведению ас . При определенном навыке учащиеся сразу составляют вспомогательное уравнение, находят его корни по теореме Виета и указывают корни заданного полного уравнения. Приведем примеры.

Пример 4. Решите уравнение .

Составим вспомогательное уравнение и по теореме Виета найдем его корни . А значит, корни исходного уравнения .

Ответ: .

Пример 5. Решите уравнение .

Вспомогательное уравнение имеет вид . По теореме Виета его корни . Находим корни исходного уравнения .

Ответ: .

И еще один случай, когда применение теоремы Виета позволяет устно найти корни полного квадратного уравнения. Нетрудно доказать, что число 1 является корнем уравнения , тогда и только тогда, когда . Второй корень уравнения находится по теореме Виета и равен . Еще одно утверждение: чтобы число –1 являлось корнем уравнения необходимо и достаточно, чтобы . Тогда второй корень уравнения по теореме Виета равен . Аналогичные утверждения можно сформулировать и для приведенного квадратного уравнения.

Пример 6. Решите уравнение .

Заметим, что сумма коэффициентов уравнения равна нулю. Значит, корни уравнения .

Ответ: .

Пример 7. Решите уравнение .

Для коэффициентов этого уравнения выполняется свойство (действительно, 1-(-999)+(-1000)=0). Значит, корни уравнения .

Ответ: ..

Примеры на применение теоремы Виета

Задание 1. Решите приведенное квадратное уравнение с помощью теоремы Виета.

1. 6. 11. 16.
2. 7. 12. 17.
3. 8. 13. 18.
4. 9. 14. 19.
5. 10. 15. 20.

Задание 2. Решите полное квадратное уравнение с помощью перехода к вспомогательному приведенному квадратному уравнению.

1. 6. 11. 16.
2. 7. 12. 17.
3. 8. 13. 18.
4. 9. 14. 19.
5. 10. 15. 20.

Задание 3. Решите квадратное уравнение с помощью свойства .


© 2024
polyester.ru - Журнал для девушек и женщин